Abstract

Acoustic beamforming array design methods are typically suited for circular and rectangular areas. A comparison of three array design methods is presented in this paper over irregular shaped areas, including L-shapes and arches. Partial-logarithmic spiral arrays that possess their geometric center either at the origin of the array area or the centroid of the irregular shaped area are compared against randomized array designs based on maximum sidelobe level (MSL) parameters and arrays generated using a recently published array design method named the adaptive array reduction method (AARM). In the AARM, a large array is reduced to a smaller array by seeking the removed microphone that possesses the minimum value of the MSL, the main lobe width (MLW), and a lobe distortion term. The AARM is also tested in two practical cases against a partial spiral array design used at the NASA Langley low-turbulence pressure tunnel and a hypothetical rectangular wall case. In both cases, the AARM showed superior performance to the logarithmic spiral arrays in all cases based on MSL and MLW criteria. Of the three methods compared, the AARM best utilizes the full potential array aperture of an irregular area and therefore produces the best MSL, MLW, and lobe distortion values.

References

References
1.
Chiariotti
,
P.
,
Martarelli
,
M.
, and
Castellini
,
P.
,
2019
, “
Acoustic Beamforming for Noise Source Localization—Reviews, Methodology and Applications
,”
Mech. Syst. Signal Process.
,
120
, pp.
422
448
. 10.1016/j.ymssp.2018.09.019
2.
Merino-Martínez
,
R.
,
Sijtsma
,
P.
,
Snellen
,
M.
,
Ahlefeldt
,
T.
,
Antoni
,
J.
,
Bahr
,
C.
,
Blacodon
,
D.
,
Ernst
,
D.
,
Finez
,
A.
,
Funke
,
S.
,
Geyer
,
T. F.
,
Haxter
,
S.
,
Herold
,
G.
,
Huang
,
X.
,
Humphreys
,
W. M.
,
Leclère
,
Q.
,
Malgoezar
,
A.
,
Michel
,
U.
,
Padois
,
T.
,
Pereira
,
A.
,
Picard
,
C.
,
Sarradj
,
E.
,
Siller
,
H.
,
Simons
,
D. G.
, and
Spehr
,
C.
,
2019
, “
A Review of Acoustic Imaging Methods Using Phased Microphone Arrays
,”
CEAS Aeronaut. J.
,
10
(
1
), pp.
197
230
. 10.1007/s13272-019-00383-4
3.
Brooks
,
T. F.
, and
Humphreys
,
W. M.
,
2006
, “
A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) Determined From Phased Microphone Arrays
,”
J. Sound Vib.
,
294
(
4
), pp.
856
879
. 10.1016/j.jsv.2005.12.046
4.
Brusniak
,
L.
,
2008
, “
DAMAS2 Validation for Flight Test Airframe Noise Measurements
,”
Proceedings of the 2nd Berlin Beamforming Conference
,
Berlin
,
Feb. 19–20
, p.
12
.
5.
Chen
,
B.
,
Wei
,
Q.
,
Shao
,
T.
,
Li
,
Y.
, and
Huang
,
X.
,
2014
, “
Aeroacoustic Imaging Experiments of Airframe Noise in Lined Wall Closed-Section Wind Tunnel
,”
J. Aerosp. Eng.
28
(
4
),
04014090
.
6.
Fleury
,
V.
, and
Bulté
,
J.
,
2011
, “
Extension of Deconvolution Algorithms for the Mapping of Moving Acoustic Sources
,”
J. Acoust. Soc. Am.
,
129
(
3
), pp.
1417
1428
. 10.1121/1.3531939
7.
Moreau
,
D. J.
,
Prime
,
Z.
,
Porteous
,
R.
,
Doolan
,
C. J.
, and
Valeau
,
V.
,
2014
, “
Flow-Induced Noise of a Wall-Mounted Finite Airfoil at Low-to-Moderate Reynolds Number
,”
J. Sound Vib.
,
333
(
25
), pp.
6924
6941
. 10.1016/j.jsv.2014.08.005
8.
Geyer
,
T.
,
Sarradj
,
E.
, and
Fritzsche
,
C.
,
2010
, “
Measurement of the Noise Generation at the Trailing Edge of Porous Airfoils
,”
Exp. Fluids
,
48
(
2
), pp.
291
308
. 10.1007/s00348-009-0739-x
9.
Arcondoulis
,
E. J. G.
,
Doolan
,
C. J.
,
Brooks
,
L. A.
, and
Zander
,
A. C.
,
2011
, “
Airfoil Trailing Edge Noise Source Location at Low to Moderate Reynolds Number
,”
Proceedings of the 17th AIAA/CEAS Aeroacoustics Conference
,
Portland, OR
,
Jun. 5–8
,
AIAA Paper
, pp.
2011
2785
.
10.
Porteous
,
R.
,
Prime
,
Z.
,
Doolan
,
C. J.
,
Moreau
,
D. J.
, and
Valeau
,
V.
,
2015
, “
Three-Dimensional Beamforming of Dipolar Aeroacoustic Sources
,”
J. Sound Vib.
,
355
, pp.
117
134
. 10.1016/j.jsv.2015.06.030
11.
Huang
,
X.
,
Bai
,
L.
,
Vinogradov
,
I.
, and
Peers
,
E.
,
2012
, “
Adaptive Beamforming for Array Signal Processing in Aeroacoustic Measurements
,”
J. Acoust. Soc. Am.
,
131
(
3
), pp.
2152
2161
. 10.1121/1.3682041
12.
Liu
,
Y.
,
Dowling
,
A. P.
, and
Shin
,
H.-C.
,
2008
, “
Measurement and Simulation of Surface Roughness Noise Using Phased Microphone Arrays
,”
J. Sound Vib.
,
314
(
1–2
), pp.
95
112
. 10.1016/j.jsv.2007.12.041
13.
Bjelić
,
M.
,
Stanojević
,
M.
,
Šumarac Pavlović
,
D.
, and
Mijić
,
M.
,
2017
, “
Microphone Array Geometry Optimization for Traffic Noise Analysis
,”
J. Acoust. Soc. Am.
,
141
(
5
), pp.
3101
3104
. 10.1121/1.4982694
14.
Oerlemans
,
S.
,
Fisher
,
M.
,
Maeder
,
T.
, and
Kögler
,
K.
,
2009
, “
Reduction of Wind Turbine Noise Using Optimized Airfoils and Trailing-Edge Serrations
,”
AIAA J.
,
47
(
6
), pp.
1470
1481
. 10.2514/1.38888
15.
Humphreys
Jr,
W.
,
Brooks
,
T.
,
Hunter
Jr,
W.
, and
Meadows
,
K.
,
1998
, “
Design and Use of Microphone Directional Arrays for Aeroacoustic Measurements
,”
36th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 12–15
.
16.
Brooks
,
T.
, and
Humphreys
Jr,
W.
,
1999
, “
Effect of Directional Array Size on the Measurement of Airframe Noise Components
,”
Proceedings of the 5th AIAA/CEAS Aeroacoustics Conference and Exhibit
,
Bellevue, WA
,
May 10–12
,
AIAA Paper 1999-99
.
17.
Högbom
,
J. A.
,
1974
, “
Aperture Synthesis With a Non-regular Distribution of Interferometer Baselines
,”
Astron. Astrophys. Suppl. Ser.
,
15
, p.
417
.
18.
Sijtsma
,
P.
,
2007
, “
Clean Based on Spatial Source Coherence
,”
Int. J. Aeroacoust.
,
6
(
4
), pp.
357
374
. 10.1260/147547207783359459
19.
Sijtsma
,
P.
, and
Snellen
,
M.
,
2016
, “
High-Resolution CLEAN-SC
,”
Proceedings of the 7th Berlin Beamforming Conference
,
Berlin
,
Feb. 29-Mar. 1
, p.
1
.
20.
Dougherty
,
R. P.
,
2005
, “
Extensions of DAMAS and Benefits and Limitations of Deconvolution in Beamforming
,”
Proceedings of the 11th AIAA/CEAS Aeroacoustics Conference
,
Monterey, CA
,
May 23-25
,
AIAA Paper 2005-2961
.
21.
Ma
,
W.
, and
Liu
,
X.
,
2017
, “
Improving the Efficiency of Damas for Sound Source Localization Via Wavelet Compression Computational Grid
,”
J. Sound Vib.
,
395
, pp.
341
353
. 10.1016/j.jsv.2017.02.005
22.
Ma
,
W.
, and
Liu
,
X.
,
2017
, “
DAMAS With Compression Computational Grid for Acoustic Source Mapping
,”
J. Sound Vib.
,
410
, pp.
473
484
. 10.1016/j.jsv.2017.03.027
23.
Dougherty
,
R. P.
, and
Podboy
,
G. G.
,
2009
, “
Improved Phased Array Imaging of a Model Jet
,”
Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference
,
Miami, FL
,
May 11-13
,
AIAA Paper 2009-3186
.
24.
Underbrink
,
J. R.
,
2002
, “Aeroacoustic Phased Array Testing in Low Speed Wind Tunnels,”
Aeroacoustic Measurements
,
T. J.
Mueller
, ed.,
Springer
,
Berlin/Heidelberg
, pp.
98
217
.
25.
Billingsley
,
J.
, and
Kinns
,
R.
,
1976
, “
The Acoustic Telescope
,”
J. Sound Vib.
,
48
(
4
), pp.
485
510
. 10.1016/0022-460X(76)90552-6
26.
Sarradj
,
E.
,
2016
, “
A Generic Approach to Synthesize Optimal Array Microphone Arrangements
,”
Proceedings of the 6th Berlin Beamforming Conference
,
Berlin
,
Feb. 29-Mar. 1
, pp.
4
.
27.
Liu
,
Y.
,
Quayle
,
A. R.
,
Dowling
,
A. P.
, and
Sijtsma
,
P.
,
2008
, “
Beamforming Correction for Dipole Measurement Using Two-Dimensional Microphone Arrays
,”
J. Acoust. Soc. Am.
,
124
(
1
), pp.
182
191
. 10.1121/1.2931950
28.
Dougherty
,
R. P.
,
1998
, “
Spiral-Shaped Array for Broadband Imaging
,”
U.S. Patent No. 5,838,284
.
29.
Prime
,
Z.
, and
Doolan
,
C.
,
2013
, “
A Comparison of Popular Beamforming Arrays
,”
Proceedings of the Australian Acoustical Society (AAS2013), Victor Harbor
,
South Australia
,
Nov. 17–20
.
30.
Arcondoulis
,
E. J. G.
,
Doolan
,
C. J.
,
Zander
,
A. C.
, and
Brooks
,
L. A.
,
2010
, “
Design and Calibration of a Small Aeroacoustic Beamformer
,”
Proceedings of the 20th International Congress on Acoustics
,
Victor Harbor, South Australia, Australia
,
Aug. 23–27
, Vol.
1
.
31.
Arcondoulis
,
E. J. G.
,
Doolan
,
C. J.
,
Brooks
,
L. A.
, and
Zander
,
A. C.
,
2011
, “
A Modification to Logarithmic Spiral Beamforming Arrays for Aeroacoustic Applications
,”
Proceedings of the 17th AIAA/CEAS Aeroacoustics Conference
,
Portland, OR
,
Jun. 5–8
,
AIAA Paper 2011-2720
.
32.
Yan
,
L.
, and
Ma
,
W.
,
2018
, “
Arrangements of Phased Microphone Arrays for Acoustic Source Localization Based on Deconvolution Algorithms
,”
J. Phys.: Conf. Ser.
1065
(
10
), p.
102002
.
33.
Steinberg
,
B. D.
,
1976
,
Principles of Aperture and Array System Design: Including Random and Adaptive Arrays
,
Wiley-Interscience
,
New York
.
34.
Sijtsma
,
P.
,
1997
, “
Optimum Arrangements in a Planar Microphone Array
,”
First CEASASC Workshop: Wind Tunnel Testing in Aeroacoustics
,
DNW, Noordoostpolder, The Netherlands
,
Nov. 5–6
, Vol.
5
, p.
6
.
35.
Pompei
,
F. J.
, and
Wooh
,
S. -C.
,
2002
, “
Phased Array Element Shapes for Suppressing Grating Lobes
,”
J. Acoust. Soc. Am.
,
111
(
5
), pp.
2040
2048
. 10.1121/1.1460924
36.
Arcondoulis
,
E.
, and
Liu
,
Y.
,
2019
, “
An Iterative Microphone Removal Method for Acoustic Beamforming Array Design
,”
J. Sound Vib.
,
442
, pp.
552
571
. 10.1016/j.jsv.2018.11.005
37.
Arcondoulis
,
E. J. G.
, and
Liu
,
Y.
,
2019
, “
Adaptive Array Reduction Method for Acoustic Beamforming Array Designs
,”
J. Acoust. Soc. Am.
,
145
(
2
), pp.
EL156
EL160
. 10.1121/1.5090191
38.
Arcondoulis
,
E. J. G.
,
Liu
,
Y.
,
Xu
,
P.
, and
Chen
,
N.
,
2020
, “
Application of the Adaptive Array Reduction Method for Offset Acoustic Source Localisation
,”
J. Sound Vib.
,
478
, p.
115358
. 10.1016/j.jsv.2020.115358
39.
Arcondoulis
,
E. J. G.
,
Liu
,
Y.
,
Xu
,
P.
, and
Chen
,
N.
,
2020
, “
An Array Pairing Method for Localizing Distributed Sources by Acoustic Beamforming
,”
J. Acoust. Soc. Am.
,
147
(
1
), pp.
EL7
EL12
. 10.1121/10.0000496
40.
Sijtsma
,
P.
,
2010
, “
Phased Array Beamforming Applied to Wind Tunnel and Fly-Over Tests
,”
SAE Technical Paper
.
41.
Dougherty
,
R. P.
,
2002
, “Beamforming in Acoustic Testing,”
Aeroacoustic Measurements
,
T. J.
Mueller
, ed.,
Springer
,
Berlin/Heidelberg
, pp.
62
97
.
42.
Sarradj
,
E.
,
2010
, “
A Fast Signal Subspace Approach for the Determination of Absolute Levels From Phased Microphone Array Measurements
,”
J. Sound Vib.
,
329
(
9
), pp.
1553
1569
. 10.1016/j.jsv.2009.11.009
43.
Sarradj
,
E.
,
2012
, “
Three-Dimensional Acoustic Source Mapping With Different Beamforming Steering Vector Formulations
,”
Adv. Acoust. Vib.
,
2012
, p.
292695
. 10.1155/2012/292695
44.
Fischer
,
J.
, and
Doolan
,
C.
,
2017
, “
Beamforming in a Reverberant Environment Using Numerical and Experimental Steering Vector Formulations
,”
Mech. Syst. Signal Process.
,
91
, pp.
10
22
. 10.1016/j.ymssp.2016.12.025
You do not currently have access to this content.