Abstract

Brake squeal has been a challenging issue to overcome for the automotive sector. The phenomenon often underpins more serious mechanical issues leading to poor user satisfaction, compromised safety, and a negative impact on the market. Automotive manufacturers are highly motivated to solve the squealing problem to prevent sudden failure of the brake system, which can be catastrophic. This article provides an approach to mitigate the squealing of brakes through the application of piezoelectric patches shunted by appropriately tuned electrical networks. The designated piezoelectric patches used with the brake pads can provide a unique characteristic, namely, being able to convert the mechanical energy of squealing brakes into electrical energy. This energy can be dispersed throughout an electrical network, fostering greater stability and damping risk factors of the brake system. This technique is envisioned as empowering the disc brake systems to perform across a range of operating parameters in a robust fashion, without experiencing brake squealing. The model proposed in this article is a multifield finite element model that includes two degrees-of-freedom (DOFs) disc brake system model as well as 2DOFs for the shunted piezoelectric network to independently control the brake modes of oscillation and hence to enable the mitigation of the squealing threshold. The brake system establishes the stability limits as a function of the design parameters of the shunted piezoelectric network. The effectiveness of the developed system is also provided in a numerical examples that shows the effectiveness of the shunted piezoelectric networks in controlling brake squeal phenomenon. The method proposed in this article can be applied to distributed disc brakes as an extension of the current work.

References

References
1.
Hochlenert
,
D.
,
Spelsberg-Korspeter
,
G.
, and
Hagedorn
,
P.
,
2010
, “
A Note on Safety-Relevant Vibrations Induced by Brake Squeal
,”
J. Sound. Vib.
,
329
(
19
), pp.
3867
3872
. 10.1016/j.jsv.2010.04.033
2.
Ibrahim
,
R.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal, and Chaos—Part I: Mechanics of Contact and Friction
,”
ASME Appl. Mech. Rev.
,
47
(
7
), pp.
209
226
. 10.1115/1.3111079
3.
Ibrahim
,
R.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal, and Chaos—Part II: Dynamics and Modeling
,”
ASME Appl. Mech. Rev.
,
47
(
7
), pp.
227
253
. 10.1115/1.3111080
4.
Kinkaid
,
N.
,
O’Reilly
,
O. M.
, and
Papadopoulos
,
P.
,
2003
, “
Automotive Disc Brake Squeal
,”
J. Sound. Vib.
,
267
(
1
), pp.
105
166
. 10.1016/S0022-460X(02)01573-0
5.
Papinniemi
,
A.
,
Lai
,
J. C.
,
Zhao
,
J.
, and
Loader
,
L.
,
2002
, “
Brake Squeal: A Literature Review
,”
Appl. Acoustics
,
63
(
4
), pp.
391
400
. 10.1016/S0003-682X(01)00043-3
6.
von Wagner
,
U.
,
Hochlenert
,
D.
, and
Hagedorn
,
P.
,
2007
, “
Minimal Models for Disk Brake Squeal
,”
J. Sound. Vib.
,
302
(
3
), pp.
527
539
. 10.1016/j.jsv.2006.11.023
7.
Giannini
,
O.
, and
Massi
,
F.
,
2008
, “
Characterization of the High-Frequency Squeal on a Laboratory Brake Setup
,”
J. Sound. Vib.
,
310
(
1–2
), pp.
394
408
. 10.1016/j.jsv.2007.08.009
8.
Giannini
,
O.
,
Akay
,
A.
, and
Massi
,
F.
,
2006
, “
Experimental Analysis of Brake Squeal Noise on a Laboratory Brake Setup
,”
J. Sound. Vib.
,
292
(
1–2
), pp.
1
20
. 10.1016/j.jsv.2005.05.032
9.
Cunefare
,
K.
, and
Graf
,
A.
,
2002
, “
Experimental Active Control of Automotive Disc Brake Rotor Squeal Using Dither
,”
J. Sound. Vib.
,
250
(
4
), pp.
579
590
. 10.1006/jsvi.2001.3909
10.
DiLisio
,
P.
,
Parisi
,
R.
,
Rieker
,
J.
, and
Stringham
,
W.
,
1998
, “
Brake Noise Resolution on the 1998 Mercedes-Benz M-Class
,”
SAE Int. J. Passeng. Cars Mech. Syst.
,
107
(
6
), pp.
2329
2337
. 10.4271/982245
11.
Baba
,
H.
,
Wada
,
T.
, and
Takagi
,
T.
,
2001
, “
Study on Reduction of Brake Squeal Caused by In-plane Vibration on Rotor
,”
SAE 19th Annual Brake Colloquium & Exhibition
,
New Orleans, LA
,
Oct. 28–31
,
Technical Paper 2001-01-3158
.
12.
Hochlenert
,
D.
, and
Hagedorn
,
P.
,
2006
, “
Control of Disc Brake Squeal–Modelling and Experiments
,”
Struct. Contr. Health Monit.
,
13
(
1
), pp.
260
276
.
13.
Von Wagner
,
U.
,
Hochlenert
,
D.
,
Jearsiripongkul
,
T.
, and
Hagedorn
,
P.
,
2004
, “
Active Control of Brake Squeal Via ‘Smart Pads’
,”
SAE Int. J. Passeng. Cars Mech. Syst.
,
113
(
6
), pp.
1186
1192
. 10.4271/2004-01-2773
14.
Neubauer
,
M.
, and
Oleskiewicz
,
R.
,
2006
, “
Brake Squeal Suppression With Shunted Piezoceramics—A Control Formalism
,”
IFAC Proc. Volumes
,
39
(
16
), pp.
520
525
. 10.3182/20060912-3-DE-2911.00091
15.
Neubauer
,
M.
, and
Oleskiewicz
,
R.
,
2008
, “
Brake Squeal Control With Shunted Piezoceramics—Efficient Modelling and Experiments
,”
Proc. Inst. Mech. Eng., Part D J. Automobile Eng.
,
222
(
7
), pp.
1141
1151
. 10.1243/09544070JAUTO592
16.
Schlagner
,
S.
, and
von Wagner
,
U.
,
2007
, “
Evaluation of Automotive Disk Brake Noise Behavior Using Piezoceramic Actuators and Sensors
,”
6th International Conference on Industrial and Applied Mathematics
,
Zürich, Switzerland
,
July 16–20
.
17.
Neubauer
,
M.
, and
Oleskiewicz
,
R.
,
2008
, “
Suppression of Brake Squeal Using Shunted Piezoceramics
,”
ASME J. Vib. Acoust.
,
130
(
2
), p.
021005
. 10.1115/1.2827983
18.
Park
,
J.
,
Jung
,
T. H.
,
Kim
,
J. K.
, and
Park
,
G.
,
2017
, “
Automobile Brake Squeal Noise Suppression Using Piezoelectric-Based Devices
,”
J. Automobile Eng.
,
222
(
7
), pp.
1141
1151
.
19.
Hoffmann
,
N.
,
Fischer
,
M.
,
Allgaier
,
R.
, and
Gaul
,
L.
,
2002
, “
A Minimal Model for Studying Properties of the Mode-Coupling Type Instability in Friction Induced Oscillations
,”
Mech. Res. Commun.
,
29
(
4
), pp.
197
205
. 10.1016/S0093-6413(02)00254-9
20.
Baz
,
A. M.
,
2019
,
Active and Passive Vibration Damping
,
Wiley
,
New York
.
21.
Abdullah
,
Y. Y.
,
2017
, “
Brake Squeal: Modeling and Energy Harvesting
,”
Ph.D. dissertation
,
University of Maryland
,
MD
.
22.
Abdullah
,
Y.
, and
Baz
,
A.
,
2019
, “
Control of Brake Squeal Using Shunted Piezoelectric Pads
,”
ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
,
Louisville, KY
,
Sept. 9–11
,
Proceeding Paper SMASIS2019-5548
.https://dx.doi.org/10.1115/SMASIS2019-5548
23.
Baz
,
A.
, and
Tempia
,
A.
,
2004
, “
Active Piezoelectric Damping Composites
,”
Sens. Actuators. A.
,
112
(
2–3
), pp.
340
350
. 10.1016/j.sna.2004.01.021
You do not currently have access to this content.