Abstract

This article provides criteria for the design of electrostatic arch micro-tweezers. The tweezers can be operated in two modes: a traditional quasi-static mode where a direct current voltage commands the tweezers arms along a trajectory to manipulate objects and dynamic mode where a harmonic signal commands release or characterization of objects. While the arms are rigid and move in tandem in the static mode, this is not guaranteed in the dynamic mode. To satisfy this, we carried out modal analysis of the tweezers using a finite element model (FEM) and a reduced-order model (ROM). The results show that the arms kinetic and potential energies divide the beam span into a middle sub-span between the arms and two outer sub-spans and result in significant changes in the relative compliance of the sub-spans. The changes in the platform compliance place limitation on the tweezers dynamic operation, such that only the first symmetrical mode shape of the tweezers satisfies the design criteria. We also investigate the adequacy of an ROM using straight unbuckled beam mode shapes as basis functions to represent the tweezers response by comparing its results with those of FEM. A five-mode ROM is found adequate to represent small motions in the vicinity of the tweezers initial curvature. It is inadequate for larger motions involving snap-though motions between the initial and counter curvatures. To capture larger motions, ROM should be improved by incorporating higher order straight beam modes or using the actual tweezers modes.

References

References
1.
Chen
,
T.
,
Sun
,
L.
,
Chen
,
L.
,
Rong
,
W.
, and
Li
,
X.
,
2010
, “
A Hybrid-Type Electrostatically Driven Microgripper With an Integrated Vacuum Tool
,”
Sens. Actuators, A
,
158
(
2
), pp.
320
327
. 10.1016/j.sna.2010.01.001
2.
Jia
,
Y.
, and
Xu
,
Q.
,
2013
, “
MEMS Microgripper Actuators and Sensors: The State-of-the-Art Survey
,”
Recent Pat. Mech. Eng.
,
6
(
2
), pp.
132
142
. 10.2174/2212797611306020005
3.
Pan
,
P.
,
Wang
,
W.
,
Ru
,
C.
,
Sun
,
Y.
, and
Liu
,
X.
,
2017
, “
MEMS-Based Platforms for Mechanical Manipulation and Characterization of Cells
,”
J. Micromech. Microeng.
,
27
(
12
), p.
123003
. 10.1088/1361-6439/aa8f1d
4.
Yang
,
S.
, and
Xu
,
Q.
,
2017
, “
A Review on Actuation and Sensing Techniques for MEMS-Based Microgrippers
,”
J. Micro-Bio Robotics
,
13
(
1–4
), pp.
1
14
. 10.1007/s12213-017-0098-2
5.
Chang
,
J.
,
Min
,
B.
,
Kim
,
J.
,
Lee
,
S.
, and
Lin
,
L.
,
2009
, “
Electrostatically Actuated Carbon Nanowire Nanotweezers
,”
Smart Mater. Struct.
,
18
(
6
), p.
065017
. 10.1088/0964-1726/18/6/065017
6.
Beyeler
,
F.
,
Neild
,
A.
,
Oberti
,
S.
,
Bell
,
D. J.
,
Sun
,
Y.
,
Dual
,
J.
, and
Nelson
,
B. J.
,
2007
, “
Monolithically Fabricated Microgripper With Integrated Force Sensor for Manipulating Microobjects and Biological Cells Aligned in an Ultrasonic Field
,”
J. Microelectromech. Syst.
,
16
(
1
), pp.
7
15
. 10.1109/JMEMS.2006.885853
7.
Chang
,
H.
,
Zhao
,
H.
,
Ye
,
F.
,
Yuan
,
G.
,
Xie
,
J.
,
Kraft
,
M.
, and
Yuan
,
W.
,
2014
, “
A Rotary Comb-actuated Microgripper With a Large Displacement Range
,”
Microsyst. Technol.
,
20
(
1
), pp.
119
126
. 10.1007/s00542-013-1737-8
8.
Alneamy
,
A.
,
Khater
,
M.
,
Abdel-Aziz
,
A.
,
Heppler
,
G.
, and
Abdel-Rahman
,
E.
,
2020
, “
Electrostatic Arch Micro-Tweezers
,”
Int. J. Non-Linear Mech.
,
118
, p.
103298
. 10.1016/j.ijnonlinmec.2019.103298
9.
Perret
,
G.
,
Lacornerie
,
T.
,
Manca
,
F.
,
Giordano
,
S.
,
Kumemura
,
M.
,
Lafitte
,
N.
,
Jalabert
,
L.
,
Tarhan
,
M.
,
Lartigau
,
E.
,
Cleri
,
F.
,
Fujita
,
H.
, and
Collard
,
D.
,
2016
, “
Real-Time Mechanical Characterization of DNA Degradation Under Therapeutic X-Rays and Its Theoretical Modeling
,”
Microsyst. Nanoeng.
,
2
(
1
), pp.
1
9
.
10.
Zhang
,
L.
,
Reutzel
,
E.
Michaleris
,
P.
,
2004
, “
Finite Element Modeling Discretization Requirements for the Laser Forming Process
,”
Int. J. Mech. Sci.
,
46
(
4
), pp.
623
637
. 10.1016/j.ijmecsci.2004.04.001
11.
Xu
,
Q.
,
2015
, “
Design, Fabrication, and Testing of An MEMS Microgripper With Dual-Axis Force Sensor
,”
IEEE Sens. J.
,
15
(
10
), pp.
6017
6026
. 10.1109/JSEN.2015.2453013
12.
Younis
,
M.
,
Abdel-Rahman
,
E.
, and
Nayfeh
,
A.
,
2003
, “
A Reduced-Order Model for Electrically Actuated Microbeam-Based MEMS
,”
J. Microelectromech. Syst.
,
12
(
5
), pp.
672
680
. 10.1109/JMEMS.2003.818069
13.
Najar
,
F.
,
Choura
,
S.
,
El-Borgi
,
S.
,
Abdel-Rahman
,
E.
, and
Nayfeh
,
A.
,
2004
, “
Modeling and Design of Variable-Geometry Electrostatic Microactuators
,”
J. Micromech. Microeng.
,
15
(
3
), p.
419
. 10.1088/0960-1317/15/3/001
14.
Medina
,
L.
,
Gilat
,
R.
, and
Krylov
,
S.
,
2017
, “
Latching in Bistable Electrostatically Actuated Curved Micro Beams
,”
Int. J. Eng. Sci.
,
110
, pp.
15
34
. 10.1016/j.ijengsci.2016.10.001
15.
Meirovitch
,
L.
,
2010
,
Fundamentals of Vibrations
,
Waveland Press
.
16.
Abdel-Rahman
,
E.
,
Younis
,
M.
, and
Nayfeh
,
A.
,
2002
, “
Characterization of the Mechanical Behavior of an Electrically Actuated Microbeam
,”
J. Micromech. Microeng.
,
12
(
6
), p.
759
. 10.1088/0960-1317/12/6/306
17.
Krylov
,
S.
,
Ilic
,
B.
,
Schreiber
,
D.
,
Seretensky
,
S.
, and
Craighead
,
H.
,
2008
, “
The Pull-In Behavior of Electrostatically Actuated Bistable Microstructures
,”
J. Micromech. Microeng.
,
18
(
5
), p.
055026
. 10.1088/0960-1317/18/5/055026
18.
Ouakad
,
H. M.
, and
Younis
,
M. I.
,
2010
, “
The Dynamic Behavior of MEMS Arch Resonators Actuated Electrically
,”
Int. J. Non-Linear Mech.
,
45
(
7
), pp.
704
713
. 10.1016/j.ijnonlinmec.2010.04.005
19.
Alneamy
,
A.
,
Khater
,
M.
,
Alghamdi
,
M.
,
Abdel-Aziz
,
A.
,
Heppler
,
G.
, and
Abdel-Rahman
,
E.
,
2020
, “
Large Oscillation of Electrostatically Actuated Curved Beams
,”
J. Micromech. Microeng.
,
30
(
9
), p.
095005
. 10.1088/1361-6439/ab94d1
20.
Nayfeh
,
A.
,
Ouakad
,
H.
,
Najar
,
F.
,
Choura
,
S.
, and
Abdel-Rahman
,
E.
,
2010
, “
Nonlinear Dynamics of a Resonant Gas Sensor
,”
Nonlinear Dyn.
,
59
(
4
), pp.
607
618
. 10.1007/s11071-009-9567-z
21.
Zhao
,
X.
,
Abdel-Rahman
,
E.
, and
Nayfeh
,
A.
,
2004
, “
A Reduced-Order Model for Electrically Actuated Microplates
,”
J. Micromech. Microeng.
,
14
(
7
), p.
900
. 10.1088/0960-1317/14/7/009
22.
Vogl
,
G. W.
, and
Nayfeh
,
A. H.
,
2005
, “
A Reduced-Order Model for Electrically Actuated Clamped Circular Plates
,”
J. Micromech. Microeng.
,
15
(
4
), p.
684
. 10.1088/0960-1317/15/4/002
23.
Saghir
,
S.
,
Bellaredj
,
M.
,
Ramini
,
A.
, and
Younis
,
M.
,
2016
, “
Initially Curved Microplates Under Electrostatic Actuation: Theory and Experiment
,”
J. Micromech. Microeng.
,
26
(
9
), p.
095004
. 10.1088/0960-1317/26/9/095004
24.
Jallouli
,
A.
,
Kacem
,
N.
,
Bourbon
,
G.
,
Le Moal
,
P.
,
Walter
,
V.
, and
Lardies
,
J.
,
2016
, “
Pull-in Instability Tuning in Imperfect Nonlinear Circular Microplates Under Electrostatic Actuation
,”
Phys. Lett. A
,
380
(
46
), pp.
3886
3890
. 10.1016/j.physleta.2016.09.049
25.
Medina
,
L.
,
Gilat
,
R.
, and
Krylov
,
S.
,
2018
, “
Bistability Criterion for Electrostatically Actuated Initially Curved Micro Plates
,”
Int. J. Eng. Sci.
,
130
, pp.
75
92
. 10.1016/j.ijengsci.2018.05.006
26.
Medina
,
L. V
,
Gilat
,
R.
, and
Krylov
,
S.
,
2014
, “
Symmetry Breaking in an Initially Curved Pre-Sstressed Micro Beam Loaded by a Distributed Electrostatic Force
,”
Int. J. Solids Struct.
,
51
(
11–12
), pp.
2047
2061
. 10.1016/j.ijsolstr.2014.02.010
27.
Nicholson
,
J.
, and
Bergman
,
L.
,
1985
, “
Vibration of Thick Plates Carrying Concentrated Masses
,”
J. Sound Vib.
,
103
(
3
), pp.
357
369
. 10.1016/0022-460X(85)90428-6
28.
Wu
,
J.
,
Chen
,
D.
, and
Chou
,
H.
,
1999
, “
On the Eigenvalues of a Uniform Cantilever Beam Carrying Any Number of Spring-Ddamper–Mass Systems
,”
Int. J. Numerical Methods Eng.
,
45
(
9
), pp.
1277
1295
. 10.1002/(SICI)1097-0207(19990730)45:9¡1277::AID-NME630¿3.0.CO;2-A
29.
Chen
,
Y.
,
1963
, “
On the Vibration of Beams or Rods Carrying a Concentrated Mass
,”
ASME J. Appl. Mech.
,
30
(
2
), pp.
310
311
. 10.1115/1.3636537
30.
Laura
,
P.
,
Pombo
,
J.
, and
Susemihl
,
E.
,
1974
, “
A Note on the Vibrations of a Clamped-Free Beam With a Mass at the Free End
,”
J. Sound Vib.
,
37
(
2
), pp.
161
168
. 10.1016/S0022-460X(74)80325-1
31.
Wu
,
J.
, and
Luo
,
S.
,
1997
, “
Free Vibration Analysis of a Rectangular Plate Carrying Any Number of Point Masses and Translational Springs by Using the Modified and Quasi-Analytical and Numerical Combined Methods
,”
Int. J. Numerical Methods Eng.
,
40
(
12
), pp.
2171
2193
. 10.1002/(SICI)1097-0207(19970630)40:12¡2171::AID-NME124¿3.0.CO;2-H
32.
Maiz
,
S.
,
Bambill
,
D.
,
Rossit
,
C.
, and
Laura
,
P.
,
2007
, “
Transverse Vibration of Bernoulli–Euler Beams Carrying Point Masses and Taking Into Account Their Rotatory Inertia: Exact Solution
,”
J. Sound Vib.
,
303
(
3–5
), pp.
895
908
. 10.1016/j.jsv.2006.12.028
33.
Laura
,
P.
,
Filipich
,
C.
, and
Cortinez
,
V.
,
1987
, “
Vibrations of Beams and Plates Carrying Concentrated Masses
,”
J. Sound Vib.
,
117
, pp.
459
465
. 10.1016/S0022-460X(87)80065-2
34.
Amabili
,
M.
,
Pellegrini
,
M.
,
Righi
,
F.
, and
Vinci
,
F.
,
2006
, “
Effect of Concentrated Masses With Rotary Inertia on Vibrations of Rectangular Plates
,”
J. Sound Vib.
,
295
(
1–2
), pp.
1
12
. 10.1016/j.jsv.2005.11.035
35.
Alkharabsheh
,
S.
, and
Younis
,
M.
,
2012
, “
Dynamics of MEMS Arches of Flexible Supports
,”
J. Microelectromech. Syst.
,
22
(
1
), pp.
216
224
. 10.1109/JMEMS.2012.2226926
36.
Hajjaj
,
A.
,
Alfosail
,
F.
,
Jaber
,
N.
,
Ilyas
,
S.
, and
Younis
,
M.
,
2020
, “
Theoretical and Experimental Investigations of the Crossover Phenomenon in Micromachined Arch Resonator: Part I—Linear Problem
,”
Nonlinear Dyn.
,
99
(
1
), pp.
393
405
. 10.1007/s11071-019-05251-8
37.
Alfosail
,
F.
,
Hajjaj
,
A.
, and
Younis
,
M.
,
2019
, “
Theoretical and Experimental Investigation of Two-to-One Internal Resonance in MEMS Arch Resonators
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
1
), p.
011001
. 10.1115/1.4041771
38.
Hajjaj
,
A.
,
Alfosail
,
F.
,
Jaber
,
N.
,
Ilyas
,
S.
, and
Younis
,
M.
,
2020
, “
Theoretical and Experimental Investigations of the Crossover Phenomenon in Micromachined Arch Resonator: Part II—Simultaneous 1: 1 and 2: 1 Internal Resonances
,”
Nonlinear Dyn.
,
99
(
1
), pp.
407
432
. 10.1007/s11071-019-05242-9
39.
Lacarbonara
,
W.
,
Arafat
,
H.
, and
Nayfeh
,
A.
,
2005
, “
Non-Linear Interactions in Imperfect Beams at Veering
,”
Int. J. Non-Linear Mech.
,
40
(
7
), pp.
987
1003
. 10.1016/j.ijnonlinmec.2004.10.006
40.
Lacarbonara
,
W.
,
1997
, “
A Theoretical and Experimental Investigation of Nonlinear Vibrations of Buckled Beams
,” Master’s thesis,
Virginia Tech
, http://hdl.handle.net/10919/36721
41.
Emam
,
S.
,
2002
, “
A Theoretical and Experimental Study of Nonlinear Dynamics of Buckled Beams
,” Ph.D. thesis,
Virginia Tech
, http://hdl.handle.net/10919/25970
42.
COMSOL AB
,
2018
,
COMSOL Multiphysics V. 5.3a., COMSOL AB
,
Stockholm, Sweden
, www.comsol.com
43.
Alneamy
,
A.
,
2020
, “
Electrostatic Micro-Tweezers
,” Ph.D. thesis,
University of Waterloo
,
Waterloo, Canada
, http://hdl.handle.net/10012/16017
You do not currently have access to this content.