Abstract

A successful application of statistical energy analysis for analyzing energy exchanges between weakly coupled subsystems theoretically requires a diffuse vibrational field in all subsystems. So as to verify the conditions of establishment of the diffuse field in practice, full-field vibration measurements were conducted with a high-speed camera on a simply supported rectangular plate excited by a wide band random force. The results constitute an experimental investigation of the diffuse field region in the frequency-structural damping domain and a validation of previously obtained numerical results. The domain of the diffuse field is confined to high frequencies and low damping, with limits than can be easily defined. However, it is shown that the vibrational field is not fully spatially homogeneous due to enhancement of response induced by the effect of coherence of rays. Theoretical values of the enhancement factor obtained using an image source analysis are confirmed by measurement results.

References

References
1.
Sabine
,
W. C.
,
1922
,
Collected Paper on Acoustics
,
Harvard University Press
,
London
.
2.
Le Bot
,
A.
,
2015
,
Foundation of Statistical Energy Analysis in Vibroacoustics
,
Oxford University Press
,
Oxford
.
3.
Le Bot
,
A.
,
2017
, “
Entropy in Sound and Vibration: Towards a New Paradigm
,”
Proc. R. Soc. A
,
473
, p.
20160602
. 10.1098/rspa.2016.0602
4.
Lafont
,
T.
,
Totaro
,
N.
, and
Le Bot
,
A.
,
2013
, “
Review of Statistical Energy Analysis Hypotheses in Vibroacoustics
,”
Proc. R. Soc. A
,
470
, p.
20130515
. 10.1098/rspa.2013.0515
5.
Le Bot
,
A.
, and
Cotoni
,
V.
,
2010
, “
Validity Diagrams of Statistical Energy Analysis
,”
J. Sound Vib.
,
329
(
2
), pp.
221
235
. 10.1016/j.jsv.2009.09.008
6.
Le Bot
,
A.
,
2007
, “
Derivation of Statistical Energy Analysis From Radiative Exchanges
,”
J. Sound Vib.
,
300
(
3–5
), pp.
763
779
. 10.1016/j.jsv.2006.08.033
7.
Le Bot
,
A.
,
Bazari
,
Z.
,
Klein
,
P.
, and
Lelong
,
J.
,
2017
, “
Statistical Analysis of Vibration in Tyres
,”
J. Sound Vib.
,
392
, pp.
187
199
. 10.1016/j.jsv.2016.12.030
8.
Lafont
,
T.
,
Totaro
,
N.
, and
Le Bot
,
A.
,
2017
, “
Coupling Strength Assumption in Statistical Energy Analysis
,”
Proc. R. Soc. A
,
473
, p.
20160927
. 10.1098/rspa.2016.0927
9.
Lyon
,
R. H.
,
1974
, “
Needed: A New Definition of Diffusion
,”
J. Acoust. Soc. Am.
,
56
, pp.
1300
1302
. 10.1121/1.1903425
10.
Weaver
,
R. L.
,
1982
, “
On Diffuse Waves in Solid Media
,”
J. Acoust. Soc. Am.
,
71
, pp.
1608
1609
. 10.1121/1.387816
11.
Berry
,
M. V.
,
1987
, “
The Bakerian Lecture, 1987. Quantum Chaology
,”
Proc. R. Soc. A
,
413
, pp.
183
198
.
12.
Stockmann
,
H.-J.
,
1999
,
Quantum Chaos
,
Cambridge University Press
,
Cambridge
.
13.
Tanner
,
G.
, and
Søndergaard
,
N.
,
2007
, “
Wave Chaos in Acoustics and Elasticity
,”
J. Phys. A
,
40
(
50
), pp.
443
509
. 10.1088/1751-8113/40/50/R01
14.
Bäcker
,
A.
,
2007
, “
Random Waves and More: Eigenfunctions in Chaotic and Mixed Systems
,”
Eur. Phys. J. Spec. Top.
,
145
, pp.
161
169
. 10.1140/epjst/e2007-00153-4
15.
Kuhl
,
U.
,
Persson
,
E.
,
Barth
,
M.
, and
Stockmann
,
H.-J.
,
2000
, “
Mixing of Wavefunctions in Rectangular Microwave Billiards
,”
Eur. Phys. J. B
,
17
, pp.
253
259
. 10.1007/s100510070139
16.
Li
,
H.
,
Totaro
,
N.
,
Maxit
,
L.
, and
Le Bot
,
A.
,
2019
, “
Ergodic Billiard and Statistical Energy Analysis
,”
Wave Motion
,
87
, pp.
166
178
. 10.1016/j.wavemoti.2018.08.011
17.
Crandall
,
S. H.
, and
Wittig
,
L. E.
,
1972
, “Dynamic Response of Structures,”
Herrmann
,
G.
, and
Perrone
,
N.
, eds.,
Pergamon Press
,
New York
, pp.
55
71
.
18.
Itao
,
K.
, and
Crandall
,
S. H.
,
1978
, “
Wideband Random Vibration of Circular Plates
,”
ASME J. Mech. Des.
,
100
(
4
), pp.
690
695
. 10.1115/1.3453994
19.
Langley
,
A. J.
, and
Taylor
,
P. H.
,
1979
, “
Chladni Patterns in Random Vibration
,”
Int. J. Eng. Sci.
,
17
(
9
), pp.
1039
1047
. 10.1016/0020-7225(79)90025-9
20.
Crandall
,
S. H.
,
1980
, “
Localized Response Reductions in Wide-Band Random Vibration of Uniform Structures
,”
Ingenieur-Archiv
,
49
, pp.
347
359
. 10.1007/BF02426913
21.
Crandall
,
S. H.
, and
Zhu
,
W.-Q.
,
1986
, “
Wide Band Random Vibration of an Equilateral Triangular Plate
,”
Probab. Eng. Mech.
,
1
(
1
), pp.
5
12
. 10.1016/0266-8920(86)90004-4
22.
Crandall
,
S. H.
,
1993
, “
Modal-Sum and Image-Sum Procedures for Estimating Wide-Band Random Response of Structures
,”
Probab. Eng. Mech.
,
8
(
3–4
), pp.
187
193
. 10.1016/0266-8920(93)90014-M
23.
Elishakoff
,
I.
, and
Ducreux
,
B.
,
2014
, “
Dramatic Effect of Cross-Correlations in Random Vibration of Point-Driven Spherically Curved Panel
,”
Arch. Appl. Mech.
,
84
, pp.
473
490
. 10.1007/s00419-013-0811-0
24.
Newland
,
D. E.
, and
Sherman
,
L. H.
,
2019
, “
Creating Visual Images With Sound and Vibration
,”
26th International Conference on Sound and Vibration
,
Montréal, QC, Canada
,
July 7–11
, pp.
4735
4742
.
25.
Weaver
,
R. L.
, and
Lobkis
,
O. I.
,
2000
, “
Enhanced Backscattering and Modal Echo of Reverberant Elastic Waves
,”
Phys. Rev. Lett.
,
84
, pp.
4942
4945
. 10.1103/PhysRevLett.84.4942
26.
Cobus
,
L. A.
,
van Tiggelen
,
B. A.
, and
Derode
,
A.
,
2017
, “
Dynamic Coherent Backscattering of Ultrasound in Three-Dimensional Strongly-Scattering Media
,”
Eur. Phys. J. Spec. Top.
,
26
, pp.
1549
1561
. 10.1140/epjst/e2016-60340-3
27.
Laroze
,
E.
,
Lobkis
,
O. I.
, and
Weaver
,
R. L.
,
2006
, “
Coherent Backscattering of Ultrasound Without a Source
,”
Europhys. Lett.
,
76
(
3
), pp.
422
426
. 10.1209/epl/i2006-10277-3
28.
Lobkis
,
O. I.
, and
Weaver
,
R. L.
,
2001
, “
On the Emergence of the Green’s Function in the Correlations of a Diffuse Field
,”
J. Acoust. Soc. Am.
,
110
, pp.
3011
3017
. 10.1121/1.1417528
29.
Tanner
,
G.
, and
Søndergaard
,
N.
,
2007
, “
Short Wavelength Approximation of a Boundary Integral Operator for Homogeneous and Isotropic Elastic Bodies
,”
Phys. Rev. E
,
75
(
3
), p.
036607
. 10.1103/PhysRevE.75.036607
30.
O’Donoughue
,
P.
,
Robin
,
O.
, and
Berry
,
A.
,
2018
, “
Time-Resolved Identification of Mechanical Loadings on Plates Using the Virtual Fields Method and Deflectometry Measurements
,”
Strain
,
54
(
3
), p.
e12258
. 10.1111/str.12258
31.
Robin
,
O.
,
Chazot
,
J.-D.
,
Boulandet
,
R.
,
Michau
,
M.
,
Berry
,
A.
, and
Atalla
,
N.
,
2016
, “
A Plane and Thin Panel With Representative Simply Supported Boundary Conditions for Laboratory Vibroacoustic Tests
,”
Acta Acust. United Acust.
,
102
(
1
), pp.
1
13
. 10.3813/AAA.918918
You do not currently have access to this content.