Abstract

Composite pretwisted tapered rotating thin-walled beams (TWB) can be used as a load-carrying structural part of a composite helicopter, wind turbine, fan, and turbomachinery blades. In the present study, the variable stiffness concept with curvilinear fiber path is used to achieve improved structural statics and dynamics performance of uniform and asymmetric composite thin-walled rotating beams. A parametric study is performed to investigate the effect of different fiber paths on the structural performance metrics including frequency spacing, coupling factor, and critical buckling load. For this purpose, The Euler–Lagrange governing equations of the dynamic system are derived via Hamilton's principle. To solve the governing set of equations, the extended Galerkin’s method (EGM) is employed. To validate the TWB model with curvilinear fibers, commercial finite element analysis tools abaqus is used. The author believes that the results presented here are likely to provide valuable information to the engineers involved in the design of advanced turbomachinery rotating blades using a variable stiffness concept with curvilinear fiber placement.

References

1.
Bruhn
,
E.
,
1973
,
Analysis and Design of Flight Vehicle Structures
,
S.R. Jacobs
,
Tri-State Offset Company, USA
.
2.
Hodges
,
D. H.
,
1990
, “
Review of Composite Rotor Blade Modeling
,”
AIAA J.
,
28
(
3
), pp.
561
565
. 10.2514/3.10430
3.
Rehfield
,
L. W.
, and
Atilgan
,
A. R.
,
1989
, “
Toward Understanding the Tailoring Mechanisms for Thin-Walled Composite Tubular Beams
,”
Proceedings of the First USSR-US Symposium on Mechanics of Composite Materials
,
S. W.
Tsai
,
J. M.
Whitney
,
T. W.
Chou
, and
R. M.
Jones
, eds.,
Latvia, USSR
,
May 23–26
, pp.
187
196
.
4.
Rafiee
,
M.
,
Nitzsche
,
F.
, and
Labrosse
,
M.
,
2017
, “
Dynamics, Vibration and Control of Rotating Composite Beams and Blades: A Critical Review
,”
Thin-Walled Struct.
,
119
, pp.
795
819
. 10.1016/j.tws.2017.06.018
5.
Hong
,
C. H.
, and
Chopra
,
I.
,
1985
, “
Aeroelastic Stability Analysis of a Composite Rotor Blade
,”
J. Am. Helicopter Soc.
,
30
(
2
), pp.
57
67
. 10.4050/JAHS.30.57
6.
Şener
,
Ö
,
Farsadi
,
T.
,
Gözcü
,
M. O.
, and
Kayran
,
A.
,
2018
, “
Evaluation of the Effect of Spar Cap Fiber Angle of Bending–Torsion Coupled Blades on the Aero-Structural Performance of Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
140
(
4
), p.
041004
. 10.1115/1.4039350
7.
Librescu
,
L.
, and
Song
,
O.
,
2006
,
Thin-Walled Composite Beams: Theory and Application
,
Springer
,
The Netherlands
.
8.
Chaviaropoulos
,
P. K.
,
2001
, “
Flap/Lead–Lag Aeroelastic Stability of Wind Turbine Blades
,”
Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology
,
4
(
4
), pp.
183
200
.
9.
Amoozgar
,
M. R.
,
Shaw
,
A. D.
,
Zhang
,
J.
, and
Friswell
,
M. I.
,
2019
, “
The Effect of a Movable Mass on the Aeroelastic Stability of Composite Hingeless Rotor Blades in Hover
,”
J. Fluids Struct.
,
87
, pp.
124
136
. 10.1016/j.jfluidstructs.2019.03.017
10.
Farsadi
,
T.
, and
Kayran
,
A.
,
2016
, “
Aeroelastic Stability Evaluation of Bend-Twist Coupled Composite Wind Turbine Blades Designed for Load Alleviation in Wind Turbine Systems
,”
Proceedings of 34th Wind Energy Symposium
,
San Diego, CA
, Jan.
4−8
, p.
1009
.
11.
Rehfield
,
L. W.
,
1985, June
, “
Design Analysis Methodology for Composite Rotor Blades
,”
Proceedings of the Seventh DoD/NASA Conference on Fibrous Composites in Structural Design
,
Denver, CO
, June
17–20
, pp.
17
20
.
12.
Song
,
O.
, and
Librescu
,
L.
,
1993
, “
Free Vibration of Anisotropic Composite Thin-Walled Beams of Closed Cross-section Contour
,”
J. Sound Vib.
,
167
(
1
), pp.
129
147
. 10.1006/jsvi.1993.1325
13.
Song
,
O.
,
Librescu
,
L.
, and
Oh
,
S. Y.
,
2001
, “
Vibration of Pretwisted Adaptive Rotating Blades Modeled as Anisotropic Thin-Walled Beams
,”
AIAA J.
,
39
(
2
), pp.
285
295
. 10.2514/2.1303
14.
Sina
,
S. A.
,
Ashrafi
,
M. J.
,
Haddadpour
,
H.
, and
Shadmehri
,
F.
,
2011
, “
Flexural–Torsional Vibrations of Rotating Tapered Thin-Walled Composite Beams
,”
Proc. Inst. Mech. Eng. Part G: J. Aeros. Eng.
,
225
(
4
), pp.
387
402
.
15.
Latalski
,
J.
,
Warminski
,
J.
, and
Rega
,
G.
,
2017
, “
Bending–Twisting Vibrations of a Rotating Hub–Thin-Walled Composite Beam System
,”
Math. Mech. Solids
,
22
(
6
), pp.
1303
1325
. 10.1177/1081286516629768
16.
Wang
,
X.
,
Morandini
,
M.
, and
Masarati
,
P.
,
2017
, “
Modeling and Control for Rotating Pretwisted Thin-Walled Beams With Piezo-Composite
,”
Compos. Struct.
,
180
, pp.
647
663
. 10.1016/j.compstruct.2017.08.041
17.
Wang
,
X.
,
Xia
,
P.
, and
Masarati
,
P.
,
2019
, “
Optimal Control of Pretwisted Rotating Thin-Walled Beams via Piezoelectrically Induced Couplings
,”
AIAA J.
,
57
(
6
), pp.
2617
2633
. 10.2514/1.J058098
18.
Warminski
,
J.
, and
Latalski
,
J.
,
2017
, “
Nonlinear Control of Flexural–Torsional Vibrations of a Rotating Thin-Walled Composite Beam
,”
Int. J. Struct. Stab. Dyn.
,
17
(
5
), p.
1740003
. 10.1142/S021945541740003X
19.
Bhaskar
,
K.
, and
Librescu
,
L.
,
1995
, “
Buckling Under Axial Compression of Thin-Walled Composite Beams Exhibiting Extension-Twist Coupling
,”
Compos. Struct.
,
31
(
3
), pp.
203
212
. 10.1016/0263-8223(95)00010-0
20.
Gurdal
,
Z.
, and
Olmedo
,
R.
,
1993
, “
In-plane Response of Laminates With Spatially Varying Fiber Orientations-Variable Stiffness Concept
,”
AIAA J.
,
31
(
4
), pp.
751
758
. 10.2514/3.11613
21.
Gurdal
,
Z.
,
Tatting
,
B. F.
, and
Wu
,
C. K.
,
2008
, “
Variable Stiffness Composite Panels: Effects of Stiffness Variation on the In-plane and Buckling Response
,”
Compos Part A: Appl. Sci. Manuf.
,
39
(
5
), pp.
911
922
. 10.1016/j.compositesa.2007.11.015
22.
Akhavan
,
H.
, and
Ribeiro
,
P.
,
2011
, “
Natural Modes of Vibration of Variable Stiffness Composite Laminates With Curvilinear Fibers
,”
Compos. Struct.
,
93
(
11
), pp.
3040
3047
. 10.1016/j.compstruct.2011.04.027
23.
Gunay
,
M. G.
, and
Timarci
,
T.
,
2017
, “
Static Analysis of Thin-Walled Laminated Composite Closed-Section Beams With Variable Stiffness
,”
Compos. Struct.
,
182
, pp.
67
78
. 10.1016/j.compstruct.2017.08.092
24.
Zamani
,
Z.
,
Haddadpour
,
H.
, and
Ghazavi
,
M. R.
,
2011
, “
Curvilinear Fiber Optimization Tools for Design Thin Walled Beams
,”
Thin-Walled Struct.
,
49
(
3
), pp.
448
454
. 10.1016/j.tws.2010.08.002
25.
Haddadpour
,
H.
, and
Zamani
,
Z.
,
2012
, “
Curvilinear Fiber Optimization Tools for Aeroelastic Design of Composite Wings
,”
J. Fluids Struct.
,
33
, pp.
180
190
. 10.1016/j.jfluidstructs.2012.05.008
26.
Farsadi
,
T.
,
Şener
,
Ö
, and
Kayran
,
A.
,
2017, November
, “
Free Vibration Analysis of Uniform and Asymmetric Composite Pretwisted Rotating Thin Walled Beam
,”
ASME 2017 International Mechanical Engineering Congress and Exposition
,
Tampa, FL
,
Nov. 3–9, 2017
, pp.
V001T03A016
V001T03A016
.
27.
Farsadi
,
T.
,
Rahmanian
,
M.
, and
Kayran
,
A.
,
2018
, “
Geometrically Nonlinear Aeroelastic Behavior of Pretwisted Composite Wings Modeled as Thin Walled Beams
,”
J. Fluids Struct.
,
83
, pp.
259
292
. 10.1016/j.jfluidstructs.2018.08.013
28.
Upadhya
,
A. R.
, and
Panda
,
K.
,
1994
, “
Recent Progress in Dynamics and Aeroelasticity
,”
Sadhana
,
19
(
3
), pp.
487
507
. 10.1007/BF02812165
29.
Farsadi
,
T.
, and
Hasbestan
,
J. J.
,
2019
, “
Calculation of Flutter and Dynamic Behavior of Advanced Composite Swept Wings With Tapered Cross Section in Unsteady Incompressible Flow
,”
Mech. Adv. Mater. Struc.
,
26
(
4
), pp.
314
332
. 10.1080/15376494.2017.1387322
30.
Latalski
,
J.
, and
Kowalczuk
,
M.
,
2018, January
, “
Experimental vs. Analytical Modal Analysis of a Composite Circumferentially Asymmetric Stiffness box Beam
,”
AIP Publishing LLC (In AIP Conference Proceedings)
,
Lublin, Poland
,
Sept. 13–16
, vol.
1922
, p.
100018
. 10.1063/1.5019103
31.
Jones
,
R. M.
,
1998
,
Mechanics of Composite Materials
,
CRC Press, Boca Raton, FL
.
32.
Amoozgar
,
M. R.
,
Fazelzadeh
,
S. A.
,
Friswell
,
M. I.
, and
Hodges
,
D. H.
,
2019
, “
Aeroelastic Stability Analysis of Tailored Pretwisted Wings
,”
AIAA J.
,
57
(
10
) pp.
1
8
.
You do not currently have access to this content.