Abstract

Annular tuned liquid dampers (TLDs) may be installed in slender structures with limited floor space, in which people and utilities must pass through the core, such as a wind turbine or observation tower. This study investigates an annular-shaped TLD equipped with damping screens. A linearized equivalent mechanical model capable of capturing the fundamental sloshing mode response of an annular TLD is presented. An experimental shake table testing program is completed to assess the performance of the model. Thirty-six frequency sweep tests consisting of various TLD configurations, excitation amplitudes, and excitation directions are completed. Good agreement is observed between the linearized equivalent mechanical model and experimental wave heights, sloshing forces, and energy dissipated per cycle that have been filtered to include only the fundamental sloshing mode response. The model is also observed to be in good agreement with experimental data for different excitation directions. The model is coupled to a generalized structure to investigate the response of a structure equipped with an annular TLD. The annular TLD is found to reduce the response of a generalized offshore wind turbine structure undergoing harmonic force excitation. The annular TLD provides performance comparable to an optimal linear tuned mass damper (TMD) with the same properties for a range of force excitation amplitudes.

References

References
1.
Kaneko
,
S.
, and
Ishikawa
,
M.
,
1999
, “
Modeling of Tuned Liquid Damper With Submerged Nets
,”
ASME J. Pressure Vessel Technol.
,
121
(
3
), pp.
334
344
. 10.1115/1.2883712
2.
Tait
,
M. J.
,
El Damatty
,
A. A.
,
Isyumov
,
N.
, and
Siddique
,
M. R.
,
2005
, “
Numerical Flow Models to Simulate Tuned Liquid Dampers (TLD) With Slat Screens
,”
J. Fluids Struct.
,
20
(
8
), pp.
1007
1023
. 10.1016/j.jfluidstructs.2005.04.004
3.
Love
,
J. S.
, and
Haskett
,
T. C.
,
2018
, “
Nonlinear Modelling of Tuned Sloshing Dampers With Large Internal Obstructions: Damping and Frequency Effects
,”
J. Fluids Struct.
,
79
, pp.
1
13
. 10.1016/j.jfluidstructs.2018.01.012
4.
Love
,
J. S.
, and
Tait
,
M. J.
,
2010
, “
Nonlinear Simulation of a Tuned Liquid Damper With Damping Screens Using a Modal Expansion Technique
,”
J. Fluids Struct.
,
26
(
7–8
), pp.
1058
1077
. 10.1016/j.jfluidstructs.2010.07.004
5.
Yu
,
Y. S.
,
Ma
,
X. R.
, and
Wang
,
B. L.
,
2007
, “
Multidimensional Modal Analysis of Liquid Nonlinear Sloshing in Right Circular Cylindrical Tank
,”
Appl. Math. Mech.
,
28
(
8
), pp.
1007
1018
. 10.1007/s10483-007-0803-y
6.
Love
,
J. S.
, and
Tait
,
M. J.
,
2011
, “
Non-Linear Multimodal Model for Tuned Liquid Dampers of Arbitrary Tank Geometry
,”
Int. J. Non-Linear Mech.
,
46
(
8
), pp.
1065
1075
. 10.1016/j.ijnonlinmec.2011.04.028
7.
Jeon
,
S.
,
Seo
,
M.
,
Cho
,
Y.
, and
Park
,
W.
,
2013
, “
Sloshing Characteristics of an Annular Cylindrical Tuned Liquid Damper for Spar-Type Floating Offshore Wind Turbine
,”
Struct. Eng. Mech.
,
47
(
3
), pp.
331
343
. 10.12989/sem.2013.47.3.331
8.
Faltinsen
,
O. M.
,
Lukovsky
,
I. A.
, and
Timokha
,
A. N.
,
2016
, “
Resonant Sloshing in an Upright Annular Tank
,”
J. Fluid Mech.
,
804
, pp.
608
645
. 10.1017/jfm.2016.539
9.
Turner
,
M. R.
, and
Rowe
,
J. R.
,
2019
, “
Coupled Shallow-Water Fluid Sloshing in an Upright Annular Vessel
,”
J. Eng. Math.
,
119
(
1
), pp.
43
67
. 10.1007/s10665-019-10018-6
10.
Takahara
,
H.
, and
Kimura
,
K.
,
2012
, “
Frequency Response of Sloshing in an Annular Cylindrical Tank Subjected to Pitching Excitation
,”
J. Sound Vib.
,
331
(
13
), pp.
3199
3212
. 10.1016/j.jsv.2012.02.023
11.
Tait
,
M. J.
,
2008
, “
Modelling and Preliminary Design of a Structure-TLD System
,”
Eng. Struct.
,
30
(
10
), pp.
2644
2655
. 10.1016/j.engstruct.2008.02.017
12.
Deng
,
X.
, and
Tait
,
M. J.
,
2008
, “
Equivalent Mechanical Models of Tuned Liquid Dampers With Different Tank Geometries
,”
Can. J. Civil Eng.
,
35
(
10
), pp.
1088
1101
. 10.1139/L08-044
13.
Love
,
J. S.
, and
Tait
,
M. J.
,
2011
, “
Equivalent Linearized Mechanical Model for Tuned Liquid Dampers of Arbitrary Tank Shape
,”
ASME J. Fluids Eng.
,
133
(
6
), pp.
1065
1075
. 10.1115/1.4004080
14.
Bauer
,
H. F.
,
1960
,
Theory of the Fluid Oscillations in a Circular Cylindrical Ring Tank Partially Filled With Liquid
,
National Aeronautics and Space Administration
,
Washington, DC
.
15.
Lackner
,
M. A.
, and
Rotea
,
M. A.
,
2011
, “
Passive Structural Control of Offshore Wind Turbines
,”
Wind Energy
,
14
(
3
), pp.
373
388
. 10.1002/we.426
16.
Ghassempour
,
M.
,
Failla
,
G.
, and
Arena
,
F.
,
2019
, “
Vibration Mitigation in Offshore Wind Turbines via Tuned Mass Damper
,”
Eng. Struct.
,
183
, pp.
610
636
. 10.1016/j.engstruct.2018.12.092
17.
Hemmati
,
A.
,
Oterkus
,
E.
, and
Barltrop
,
N.
,
2019
, “
Fragility Reduction of Offshore Wind Turbines Using Tuned Liquid Column Dampers
,”
Soil Dyn. Earthquake Eng.
,
125
, p.
105705
. 10.1016/j.soildyn.2019.105705
18.
Rodríguez Tsouroukdissian
,
A.
,
Park
,
S.
,
Pourazarm
,
P.
,
La Cava
,
W.
,
Lackner
,
M.
,
Lee
,
S.
, and
Cross-Whiter
,
J.
,
2016
, “
Smart Novel Semi-Active Tuned Mass Damper for Fixed-Bottom and Floating Offshore Wind
,”
Offshore Technology Conference
,
Houston, TX
,
May 2
, pp.
665
683
.
19.
Park
,
S.
,
Lackner
,
M. A.
,
Pourazarm
,
P.
,
Rodríguez Tsouroukdissian
,
A.
, and
Cross-Whiter
,
J.
,
2019
, “
An Investigation on the Impacts of Passive and Semiactive Structural Control on a Fixed Bottom and a Floating Offshore Wind Turbine
,”
Wind Energy
,
22
(
11
), pp.
1451
1471
. 10.1002/we.2381
20.
Chen
,
J.
, and
Georgakis
,
C. T.
,
2015
, “
Spherical Tuned Liquid Damper for Vibration Control in Wind Turbines
,”
J. Vib. Control
,
21
(
10
), pp.
1875
1885
. 10.1177/1077546313495911
21.
Ghaemmaghami
,
A.
,
Kianoush
,
R.
, and
Yuan
,
X. X.
,
2013
, “
Numerical Modeling of Dynamic Behavior of Annular Tuned Liquid Dampers for Applications in Wind Towers
,”
Comput. Aided Civ. Inf. Eng.
,
28
(
1
), pp.
38
51
. 10.1111/j.1467-8667.2012.00772.x
22.
Ha
,
M.
, and
Cheong
,
C.
,
2016
, “
Pitch Motion Mitigation of Spar-Type Floating Substructure for Offshore Wind Turbine Using Multilayer Tuned Liquid Damper
,”
Ocean Eng.
,
116
, pp.
157
164
. 10.1016/j.oceaneng.2016.02.036
23.
Ibrahim
,
R.
,
2005
,
Liquid Sloshing Dynamics
,
Cambridge University Press
,
Cambridge
.
24.
Morison
,
J. R.
,
O’Brien
,
M. P.
,
Johnson
,
J. W.
, and
Shaaf
,
S. A.
,
1950
, “
The Forces Exerted by Surface Waves on Piles
,”
Petroleum Trans.
,
189
, pp.
149
157
.
25.
Cassolato
,
M. R.
,
Love
,
J. S.
, and
Tait
,
M. J.
,
2011
, “
Modelling of a Tuned Liquid Damper With Inclined Damping Screens
,”
Struct. Control Health Monit.
,
18
(
6
), pp.
674
681
. 10.1002/stc.397
26.
Keulegan
,
G. H.
, and
Carpenter
,
L. H.
,
1958
, “
Forces on Cylinders and Plates in an Oscillating Fluid
,”
J. Res. Natl. Bureau Stand.
,
60
(
5
), pp.
423
440
. 10.6028/jres.060.043
27.
Fediw
,
A. A.
,
Isyumov
,
N.
, and
Vickery
,
B. J.
,
1995
, “
Performance of a Tuned Sloshing Water Damper
,”
J. Wind Eng. Ind. Aerodyn.
,
57
(
2–3
), pp.
237
247
. 10.1016/0167-6105(94)00107-O
28.
Hamelin
,
J. A.
,
Love
,
J. S.
,
Tait
,
M. J.
, and
Wilson
,
J. C.
,
2013
, “
Tuned Liquid Dampers With a Keulegan-Carpenter Number-Dependent Screen Drag Coefficient
,”
J. Fluids Struct.
,
43
, pp.
271
286
. 10.1016/j.jfluidstructs.2013.09.006
29.
Constantinou
,
M. C.
,
Soong
,
T. T.
, and
Dargush
,
G. F.
,
1998
,
Passive Energy Dissipation Systems for Structural Design and Retrofit
,
Multidisciplinary Center for Earthquake Engineering Research
,
Buffalo
.
30.
Warburton
,
G. B.
,
1982
, “
Optimum Absorber Parameters for Various Combinations of Response and Excitation Parameters
,”
Earthquake Eng. Struct. Dyn.
,
10
(
3
), pp.
381
401
. 10.1002/eqe.4290100304
You do not currently have access to this content.