Abstract

Ladder frame structures are used as models for multistorey buildings. These periodic structures exhibit alternating propagating and attenuating frequency bands. Of the six different wave modes of propagation, two modes strongly attenuate at all frequencies. The other four modes have nonoverlapping stop band characteristics. Thus, it is challenging to isolate such structures when subjected to broadband, multimodal base excitation. In this study, we seek to synthesize a periodic ladder frame structure that has attenuation characteristics over the maximal range of frequencies for all the modes of wave propagation. We synthesize a unit cell of the periodic structure, which comprises two distinct regions having different inertial, stiffness, and geometric properties. The eigenvalues of the transfer matrix of the unit cell determines the attenuating or the nonattenuating characteristics of the structure. A novel pictorial presentation in the form of eigenvalue map is developed. This is used to synthesize the optimal unit cell. Also, design guidelines for suitable selection of the design parameters are presented. It is shown that a large finite periodic structure comprising a unit cell synthesized using the present approach has significantly better isolation characteristics in comparison to the homogeneous or any other arbitrarily chosen periodic structure.

References

References
1.
Viswanath
,
K. G.
,
Prakash
,
K. B.
, and
Desai
,
A.
,
2010
, “
Seismic Analysis of Steel Braced Reinforced Concrete Frames
,”
Int. J. Civ. Struct. Eng.
,
1
(
1
), pp.
114
122
.
2.
Wilkinson
,
S.
, and
Hiley
,
R.
,
2006
, “
A Non-Linear Response History Model for the Seismic Analysis of High-Rise Framed Buildings
,”
Comput. Struct.
,
84
(
5–6
), pp.
318
329
. 10.1016/j.compstruc.2005.09.021
3.
Belmouden
,
Y.
, and
Lestuzzi
,
P.
,
2009
, “
An Equivalent Frame Model for Seismic Analysis of Masonry and Reinforced Concrete Buildings
,”
Constr. Build. Mater.
,
23
(
1
), pp.
40
53
. 10.1016/j.conbuildmat.2007.10.023
4.
Seya
,
H.
,
Talbott
,
M. E.
, and
Hwang
,
H. H.
,
1993
, “
Probabilistic Seismic Analysis of a Steel Frame Structure
,”
Probab. Eng. Mech.
,
8
(
2
), pp.
127
136
. 10.1016/0266-8920(93)90006-H
5.
Zhang
,
R.-H.
,
Soong
,
T.
, and
Mahmoodi
,
P.
,
1989
, “
Seismic Response of Steel Frame Structures With Added Viscoelastic Dampers
,”
Earthquake Eng. Struct. Dyn.
,
18
(
3
), pp.
389
396
. 10.1002/eqe.4290180307
6.
Brillouin
,
L.
,
2003
,
Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices
,
Courier Corporation
,
New York
.
7.
Mead
,
D. J.
,
1970
, “
Free Wave Propagation in Periodically Supported, Infinite Beams
,”
J. Sound Vib.
,
11
(
2
), pp.
181
197
. 10.1016/S0022-460X(70)80062-1
8.
Mead
,
D. J.
,
1971
, “
Vibration Response and Wave Propagation in Periodic Structures
,”
ASME J. Eng. Ind.
,
93
(
3
), pp.
783
792
. 10.1115/1.3428014
9.
Mead
,
D.
, and
Yaman
,
Y.
,
1991
, “
The Harmonic Response of Rectangular Sandwich Plates With Multiple Stiffening: A Flexural Wave Analysis
,”
J. Sound Vib.
,
145
(
3
), pp.
409
428
. 10.1016/0022-460X(91)90111-V
10.
Sorokin
,
S.
, and
Ershova
,
O.
,
2004
, “
Plane Wave Propagation and Frequency Band Gaps in Periodic Plates and Cylindrical Shells With and Without Heavy Fluid Loading
,”
J. Sound Vib.
,
278
(
3
), pp.
501
526
. 10.1016/j.jsv.2003.10.042
11.
Mead
,
D.
,
1996
, “
Wave Propagation in Continuous Periodic Structures: Research Contributions From Southampton, 1964–1995
,”
J. Sound Vib.
,
190
(
3
), pp.
495
524
. 10.1006/jsvi.1996.0076
12.
Floquet
,
G.
,
1883
, “
On the Linear Differential Equations With Periodic Coefficients
,”
Annales scientifiques de l’École Normale Supérieure
,
12
(
2
), pp.
47
88
. 10.24033/asens.220
13.
Orris
,
R. M.
, and
Petyt
,
M.
,
1974
, “
A Finite Element Study of Harmonic Wave Propagation in Periodic Structures
,”
J. Sound Vib.
,
33
(
2
), pp.
223
236
. 10.1016/S0022-460X(74)80108-2
14.
Esquivel-Sirvent
,
R.
, and
Cocoletzi
,
G.
,
1994
, “
Band Structure for the Propagation of Elastic Waves in Superlattices
,”
J. Acoust. Soc. Am.
,
95
(
1
), pp.
86
90
. 10.1121/1.408301
15.
Sigalas
,
M.
, and
Economou
,
E. N.
,
1993
, “
Band Structure of Elastic Waves in Two Dimensional Systems
,”
Solid State Commun.
,
86
(
3
), pp.
141
143
. 10.1016/0038-1098(93)90888-T
16.
Signorelli
,
J.
, and
Von Flotow
,
A.
,
1988
, “
Wave Propagation, Power Flow, and Resonance in a Truss Beam
,”
J. Sound Vib.
,
126
(
1
), pp.
127
144
. 10.1016/0022-460X(88)90403-8
17.
Pierre
,
C.
,
Castanier
,
M. P.
, and
Chen
,
W. J.
,
1996
, “
Wave Localization in Multi-Coupled Periodic Structures: Application to Truss Beams
,”
ASME Appl. Mech. Rev.
,
49
(
2
), pp.
65
86
. 10.1115/1.3101889
18.
Kohrs
,
T.
, and
Petersson
,
B. A.
,
2007
, “
Wave Propagation in Light Weight Profiles With Truss-Like Cores: Wavenumber Content, Forced Response and Influence of Periodicity Perturbations
,”
J. Sound Vib.
,
304
(
3–5
), pp.
691
721
. 10.1016/j.jsv.2007.03.022
19.
Emaci
,
E.
,
Azeez
,
M.
, and
Vakakis
,
A.
,
1998
, “
Dynamics of Trusses: Numerical and Experimental Results
,”
J. Sound Vib.
,
214
(
5
), pp.
953
964
. 10.1006/jsvi.1997.1474
20.
Bondaryk
,
J. E.
,
1997
, “
Vibration of Truss Structures
,”
J. Acoust. Soc. Am.
,
102
(
4
), pp.
2167
2175
. 10.1121/1.419632
21.
Shi
,
Z.
,
Cheng
,
Z.
, and
Xiang
,
H.
,
2014
, “
Seismic Isolation Foundations With Effective Attenuation Zones
,”
Soil Dyn. Earthquake Eng.
,
57
(
2
), pp.
143
151
. 10.1016/j.soildyn.2013.11.009
22.
Kim
,
S.-H.
, and
Das
,
M. P.
,
2012
, “
Seismic Waveguide of Metamaterials
,”
Mod. Phys. Lett. B
,
26
(
17
), p.
1250105
. 10.1142/S0217984912501059
23.
Gaofeng
,
J.
, and
Zhifei
,
S.
,
2010
, “
A New Seismic Isolation System and Its Feasibility Study
,”
Earthquake Eng. Eng. Vib.
,
9
(
1
), pp.
75
82
. 10.1007/s11803-010-8159-8
24.
Aravantinos-Zafiris
,
N.
, and
Sigalas
,
M.
,
2015
, “
Large Scale Phononic Metamaterials for Seismic Isolation
,”
J. Appl. Phys.
,
118
(
6
), p.
064901
. 10.1063/1.4928405
25.
Meirovitch
,
L.
,
1975
,
Elements of Vibration Analysis
,
McGraw-Hill
,
New York
.
26.
Lin
,
W.-W.
,
1987
, “
A New Method for Computing the Closed-Loop Eigenvalues of a Discrete-Time Algebraic Riccati Equation
,”
Linear Algebra Appl.
,
96
(
11
), pp.
157
180
. 10.1016/0024-3795(87)90342-9
27.
Arnol’d
,
V. I.
,
2013
,
Mathematical Methods of Classical Mechanics
, Vol.
60
,
Springer-Verlag
,
New York
.
28.
Howard
,
J.
, and
MacKay
,
R.
,
1987
, “
Linear Stability of Symplectic Maps
,”
J. Math. Phys.
,
28
(
5
), pp.
1036
1051
. 10.1063/1.527544
29.
Prasad
,
R.
, and
Sarkar
,
A.
,
2018
, “
Broadband Vibration Isolation for Rods and Beams Using Periodic Structure Theory
,”
ASME J. Appl. Mech.
,
86
(
2
), p.
12
.
30.
Fahy
,
F. J.
, and
Gardonio
,
P.
,
2007
,
Sound and Structural Vibration: Radiation, Transmission and Response
,
Elsevier
,
London
.
You do not currently have access to this content.