Abstract

Mode shape information plays the essential role in deciding the spatial pattern of vibratory response of a structure. The uncertainty quantification of mode shape, i.e., predicting mode shape variation when the structure is subjected to uncertainty, can provide guidance for robust design and control. Nevertheless, computational efficiency is a challenging issue. Direct Monte Carlo simulation is unlikely to be feasible especially for a complex structure with a large number of degrees-of-freedom. In this research, we develop a new probabilistic framework built upon the Gaussian process meta-modeling architecture to analyze mode shape variation. To expedite the generation of input data set for meta-model establishment, a multi-level strategy is adopted which can blend a large amount of low-fidelity data acquired from order-reduced analysis with a small amount of high-fidelity data produced by high-dimensional full finite element analysis. To take advantage of the intrinsic relation of spatial distribution of mode shape, a multi-response strategy is incorporated to predict mode shape variation at different locations simultaneously. These yield a multi-level, multi-response Gaussian process that can efficiently and accurately quantify the effect of structural uncertainty to mode shape variation. Comprehensive case studies are carried out for demonstration and validation.

References

References
1.
Liao
,
H. T.
, and
Wu
,
W. W.
, “
A Frequency Domain Method for Calculating the Failure Probability of Nonlinear Systems With Random Uncertainty
,”
ASME J. Vib. Acoust.
,
140
(
4
), p.
041019
. 10.1115/1.4039405
2.
Zhou
,
K.
, and
Tang
,
J.
,
2018
, “
Uncertainty Quantification in Structural Dynamic Analysis Using Two-Level Gaussian Processes and Bayesian Inference
,”
J. Sound Vib.
,
412
, pp.
95
115
. 10.1016/j.jsv.2017.09.034
3.
Yang
,
J.
,
Faverjon
,
B.
,
Peters
,
H.
,
Marburg
,
S.
, and
Kessissoglou
,
N.
,
2017
, “
Deterministic and Stochastic Model Order Reduction for Vibration Analyses of Structures With Uncertainties
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
021007
. 10.1115/1.4035133
4.
Craig
,
R. R.
, and
Kurdila
,
A. J.
,
2006
,
Fundamentals of Structural Dynamics
,
Wiley
,
New York
.
5.
Salvini
,
P.
, and
Vivio
,
F.
,
2007
, “
Dynamic Reduction Strategies to Extend Modal Analysis Approach at Higher Frequencies
,”
Finite Elem. Anal. Des.
,
43
(
2
), pp.
931
940
. 10.1016/j.finel.2007.06.001
6.
Panayirci
,
H. M.
,
Pradlwater
,
H. J.
, and
Schueller
,
G. I.
,
2011
, “
Efficient Stochastic Structural Analysis Using Guyan Reduction
,”
Adv. Eng. Softw.
,
42
(
4
), pp.
187
196
. 10.1016/j.advengsoft.2011.02.004
7.
Masson
,
G.
,
Ait Brik
,
B.
,
Cogan
,
S.
, and
Bouhaddi
,
N.
,
2006
, “
Component Mode Synthesis (CMS) Based on an Enriched Ritz Approach for Efficient Structural Optimization
,”
J. Sound Vib.
,
296
(
4–5
), pp.
845
860
. 10.1016/j.jsv.2006.03.024
8.
Shanmugam
,
A.
, and
Padmanabhan
,
C.
,
2006
, “
A Fixed-Free Interface Component Mode Synthesis Method for Rotordynamic Analysis
,”
J. Sound Vib.
,
297
(
3–5
), pp.
664
679
. 10.1016/j.jsv.2006.04.011
9.
Zhou
,
K.
,
Liang
,
G.
, and
Tang
,
J.
,
2016
, “
Component Mode Synthesis Order-Reduction for Dynamic Analysis of Structure Modeled With NURBS Finite Element
,”
ASME J. Vib. Acoust.
,
138
(
2
), p.
021016
. 10.1115/1.4032516
10.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximation Are Available
,”
Biometrika
,
87
(
1
), pp.
1
13
. 10.1093/biomet/87.1.1
11.
O’Hagan
,
A.
,
2006
, “
Bayesian Analysis of Computer Code Outputs: A Tutorial
,”
Reliab. Eng. Syst. Safe.
,
91
(
10–11
), pp.
1290
1300
. 10.1016/j.ress.2005.11.025
12.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Process for Machine Learning
,
MIT Press
,
Cambridge, MA
.
13.
DiazDelaO
,
F. A.
, and
Adhikari
,
S.
,
2010
, “
Structural Dynamic Analysis Using Gaussian Process Emulators
,”
Eng. Comput.
,
27
(
5
), pp.
580
605
. 10.1108/02644401011050895
14.
DiazDelaO
,
F. A.
, and
Adhikari
,
S.
,
2011
, “
Gaussian Process Emulators for the Stochastic Finite Element Method
,”
Int. J. Numer. Meth. Eng.
,
87
(
6
), pp.
521
540
. 10.1002/nme.3116
15.
Xia
,
Z.
, and
Tang
,
J.
,
2013
, “
Characterization of Dynamic Response of Structures With Uncertainty by Using Gaussian Processes
,”
ASME J. Vib. Acoust.
,
135
(
5
), p.
051006
. 10.1115/1.4023998
16.
Wan
,
H. P.
,
Mao
,
Z.
,
Todd
,
M. D.
, and
Ren
,
W. X.
,
2014
, “
Analytical Uncertainty Quantification for Modal Frequencies With Structural Parameter Uncertainty Using a Gaussian Process Metamodel
,”
Eng. Struct.
,
75
, pp.
577
589
. 10.1016/j.engstruct.2014.06.028
17.
Wan
,
H. P.
,
Ren
,
W. X.
, and
Todd
,
M. D.
,
2017
, “
An Efficient Metamodeling Approach for Uncertainty Quantification of Complex System With Arbitrary Parameter Probability Distributions
,”
Int. J. Numer. Meth. Eng.
,
109
(
5
), pp.
739
760
. 10.1002/nme.5305
18.
Zhou
,
K.
,
Hegde
,
A.
,
Cao
,
P.
, and
Tang
,
J.
,
2017
, “
Design Optimization Towards Alleviating Forced Response Variation in Cyclically Periodic Structure Using Gaussian Process
,”
ASME J. Vib. Acoust.
,
139
(
1
), p.
011017
. 10.1115/1.4035107
19.
Arendt
,
P. D.
,
Apley
,
D. W.
,
Chen
,
W.
,
Lamb
,
D.
, and
Gorsich
,
D.
,
2012
, “
Improving Identifiability in Model Calibration Using Multiple Responses
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100909
. 10.1115/1.4007573
20.
Wei
,
P.
,
Liu
,
F.
, and
Tang
,
C.
,
2018
, “
Reliability and Reliability-Based Importance Analysis of Structural Systems Using Multiple Response Gaussian Process Model
,”
Reliab. Eng. Syst. Safe.
,
175
, pp.
183
195
. 10.1016/j.ress.2018.03.013
21.
Bostanabad
,
R.
,
Liang
,
B.
,
Gao
,
J.
,
Liu
,
W. K.
,
Cao
,
J.
,
Zeng
,
D.
,
Su
,
X.
,
Xu
,
H.
,
Li
,
Y.
, and
Chen
,
W.
,
2018
, “
Uncertainty Quantification in Multiscale Simulation of Woven Fiber Composites
,”
Comput. Methods Appl. Mech. Eng.
,
338
, pp.
506
532
. 10.1016/j.cma.2018.04.024
22.
Ariza Ramirez
,
W.
,
Leong
,
Z. Q.
,
Nguyen
,
H.
, and
Jayasinghe
,
S. G.
,
2018
, “
Non-Parametric Dynamic System Identification of Ships Using Multi-Output Gaussian Processes
,”
Ocean Eng.
,
166
, pp.
26
36
. 10.1016/j.oceaneng.2018.07.056
23.
Pan
,
W.
,
Tang
,
G.
, and
Tang
,
J.
,
2019
, “
Frequency Response-Based Uncertainty Analysis of Vibration System Utilizing Multiple Response Gaussian Process
,”
ASME J. Vib. Acoust.
,
141
(
5
), p.
051010
. 10.1115/1.4043609
24.
Wan
,
H. P.
, and
Ni
,
Y. Q.
,
2019
, “
Bayesian Multi-Task Learning Methodology for Reconstruction of Structural Health Monitoring Data
,”
Struct. Health. Monit.
,
18
(
4
), pp.
1282
1309
. 10.1177/1475921718794953
25.
Teimouri
,
H.
,
Milani
,
A. S.
,
Loeppky
,
J.
, and
Seethaler
,
R.
,
2017
, “
A Gaussian Process–Based Approach to Cope With Uncertainty in Structural Health Monitoring
,”
Struct. Health. Monit.
,
16
(
2
), pp.
174
184
. 10.1177/1475921716669722
26.
Cawley
,
G. C.
, and
Talbot
,
N. L. C.
,
2010
, “
On Over-Fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation
,”
J. Mach. Learn. Res.
,
11
, pp.
2079
2107
.
27.
Johnson
,
R.
, and
Wichern
,
D.
,
2007
,
Applied Multivariate Statistical Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
28.
Cao
,
P.
,
Shuai
,
Q.
, and
Tang
,
J.
,
2019
, “
Leveraging Gaussian Process Regression and Many-Objective Optimization Through Voting Scores for Fault Identification
,”
IEEE Access
,
7
, pp.
94481
94496
. 10.1109/ACCESS.2019.2924713
29.
Parsopoulos
,
K. E.
, and
Vrahatis
,
M. N.
,
2010
,
Particle Swarm Optimization and Intelligence: Advances and Applications
,
IGI Global
,
Hershey, PA
.
30.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2012b
, “
Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identifiability
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100908
. 10.1115/1.4007390
31.
Loan
,
C. F. V.
,
2000
, “
The Ubiquitous Kronecker Product
,”
J. Comput. Appl. Math.
,
123
(
1–2
), pp.
85
100
. 10.1016/S0377-0427(00)00393-9
32.
The MathWorks Inc.
,
2018
, MATLAB (2018b), Natick, MA.
33.
ANSYS Inc.
,
2018
, Ansys® Academic Research Mechanical, Release 19.2, Canonsburg, PA.
34.
Kroese
,
D. P.
,
Taimre
,
T.
, and
Botev
,
Z. I.
,
2011
,
Handbook of Monte Carlo Methods
,
Wiley
,
New York
.
35.
Syhnk
,
J. J.
,
2013
,
Probability, Random Variables, and Random Processes: Theory and Signal Processing Applications
,
John Wiley & Sons
,
Hoboken, NJ
.
36.
Davison
,
A. C.
, and
Hinkley
,
D. V.
,
2009
,
Bootstrap Methods and Their Applications
,
Cambridge University Press
,
Cambridge, UK
.
37.
Sarsri
,
D.
,
Azrar
,
L.
,
Jebbouri
,
A.
, and
EI Hami
,
A.
,
2011
, “
Component Mode Synthesis and Polynomial Chaos Expansions for Stochastic Frequency Functions of Large Linear FE Models
,”
Comput. Struct.
,
89
(
3–4
), pp.
346
356
. 10.1016/j.compstruc.2010.11.009
You do not currently have access to this content.