Abstract

The present study deals with the analysis of dissipative multiresonant pillared and trampoline effect–enhanced elastic metamaterials for the amplification of local resonance bandgaps. The study is conducted through a finite element–based numerical technique and substantiated with a discrete mass-in-mass analytical model. The band structures and wave dispersion characteristics of the multiresonant pillars erected on a thin elastic plate foundation are analyzed. Compared to a single-resonant metamaterial, this multiresonant structure innovatively creates wider bandgaps due to the coupling of resonance frequencies of the pillar modes with the base plate. For trampoline metamaterials, a periodic array of holes is made inside the plate. The holes forge the plate to work as a compliance base that enhances the system resonance frequency through intensive vibration of pillar-plate structure resulting in further amplified local resonance bandgaps. The enlargement of bandgaps also depends upon the height of the pillar and diameter of holes. Extremely wide low-frequency bandgaps can be achieved for a larger pillar height and a bigger hole diameter. Through a frequency response study, reported bandgaps are compared and an infinite unit cell model (band structure) is validated. The introduction of material loss factor (material damping) resulted in a broadband vibration attenuation zone spread throughout the frequency spectrum. Compared to a standard multiresonant pillared-plate model, the bandgap amplification caused by the trampoline effect induces a relatively larger bandwidth, and this superior characteristic together with the dissipative nature of the medium may facilitate potential design outcomes for manipulating subwavelength metamaterial properties over a broad range of frequencies.

References

References
1.
Xiao
,
Y.
,
Wen
,
J. H.
,
Wang
,
G.
, and
Wen
,
X. S.
,
2013
, “
Theoretical and Experimental Study of Locally Resonant and Bragg Band Gaps in Flexural Beams Carrying Periodic Arrays of Beam-Like Resonators
,”
ASME J. Vib. Acoust.
,
135
(
4
), pp.
41006
41017
. 10.1115/1.4024214
2.
Bilal
,
O. R.
, and
Hussein
,
M. I.
,
2011
, “
Ultrawide Phononic Band Gap for Combined In-plane and Out-of-Plane Waves
,”
Phys. Rev. E
,
84
(
6 Pt 2
), p.
065701
. 10.1103/PhysRevE.84.065701
3.
Oh
,
J. H.
,
Qi
,
S. B.
,
Kim
,
Y. Y.
, and
Assouar
,
B.
,
2017
, “
Elastic Metamaterial Insulator for Broadband Low-Frequency Flexural Vibration Shielding
,”
Phys. Rev. Appl.
,
8
(
5
), pp.
054034-1
054034-11
. 10.1103/physrevapplied.8.054034
4.
D’Alessandro
,
L.
,
Ardito
,
R.
,
Braghin
,
F.
, and
Corigliano
,
A.
,
2019
, “
Low Frequency 3D Ultra-Wide Vibration Attenuation via Elastic Metamaterial
,”
Sci. Rep.
,
9
(
1
), p.
8039
. 10.1038/s41598-019-44507-6
5.
Muhammad
,
Lim
,
C. W.
, and
Reddy
,
J. N.
,
2019
, “
Built-up Structural Steel Sections as Seismic Metamaterials for Surface Wave Attenuation With Low Frequency Wide Bandgap in Layered Soil Medium
,”
Eng. Struct.
,
188
, pp.
440
451
. 10.1016/j.engstruct.2019.03.046
6.
Muhammad
, and
Lim
,
C. W.
,
2019
, “
Elastic Waves Propagation in Thin Plate Metamaterials and Evidence of low Frequency Pseudo and Local Resonance Bandgaps
,”
Phys. Lett. A
,
383
(
23
), pp.
2789
2796
. 10.1016/j.physleta.2019.05.039
7.
Zhou
,
W.
,
Su
,
Y.
,
Muhammad
,
Chen
,
W.
, and
Lim
,
C. W.
,
2019
, “
Voltage-Controlled Quantum Valley Hall Effect in Dielectric Membrane-Type Acoustic Metamaterials
,”
Int. J. Mech. Sci.
,
172
, p.
105368
. 10.1016/j.ijmecsci.2019.105368
8.
Jin
,
Y.
,
Fernez
,
N.
,
Pennec
,
Y.
,
Bonello
,
B.
,
Moiseyenko
,
R. P.
,
Hemon
,
S.
,
Pan
,
Y.
, and
Djafari-Rouhani
,
B.
,
2016
, “
Tunable Waveguide and Cavity in a Phononic Crystal Plate by Controlling Whispering-Gallery Modes in Hollow Pillars
,”
Phys. Rev. B
,
93
(
5
), p.
054109
. 10.1103/PhysRevB.93.054109
9.
Zhou
,
W. J.
,
Chen
,
W. Q.
,
Muhammad
, and
Lim
,
C. W.
,
2019
, “
Surface Effect on the Propagation of Flexural Waves in Periodic Nano-Beam and the Size-Dependent Topological Properties
,”
Compos. Struct.
,
216
, pp.
427
435
. 10.1016/j.compstruct.2019.03.016
10.
Muhammad
,
A.
,
Lim
,
C. W.
,
Reddy
,
J. N.
,
Carrera
,
E.
,
Xu
,
X.
, and
Zhou
,
Z.
,
2020/ In press
, “
Surface Elastic Waves Whispering Gallery Modes Based Subwavelength Tunable Waveguide and Cavity Modes of the Phononic Crystals
,”
Mech. Adv. Mater. Struc.
https://doi.org/10.1080/15376494.2020.1728451
11.
Christensen
,
J.
,
Fernandez-Dominguez
,
A. I.
,
De Leon-Perez
,
F.
,
Martin-Moreno
,
L.
, and
Garcia-Vidal
,
F. J.
,
2007
, “
Collimation of Sound Assisted by Acoustic Surface Waves
,”
Nat. Phys.
,
3
(
12
), pp.
851
852
. 10.1038/nphys774
12.
Muhammad
,
Zhou
,
W.
, and
Lim
,
C. W.
, “
Topological Edge Modeling and Localization of Protected Interface Modes in 1D Phononic Crystals for Longitudinal and Bending Elastic Waves
,”
Int. J. Mech. Sci.
,
159
, pp.
359
372
. 10.1016/j.ijmecsci.2019.05.020
13.
Muhammad
, and
Lim
,
C. W.
,
2020
, “
Analytical Modeling and Computation on Topological Properties of Protected Interface State of 1-d Phononic Crystal in Elastic Media
,”
J. Mech. Mater. Struct.
,
15
(
1
), pp.
15
35
. 10.2140/jomms.2020.15.15
14.
Huang
,
H. H.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2009
, “
On the Negative Effective Mass Density in Acoustic Metamaterials
,”
Int. J. Eng. Sci.
,
47
(
4
), pp.
610
617
. 10.1016/j.ijengsci.2008.12.007
15.
Fang
,
N.
,
Xi
,
D.
,
Xu
,
J.
,
Ambati
,
M.
,
Srituravanich
,
W.
,
Sun
,
C.
, and
Zhang
,
X.
,
2006
, “
Ultrasonic Metamaterials With Negative Modulus
,”
Nat. Mater.
,
5
(
6
), pp.
452
456
. 10.1038/nmat1644
16.
Li
,
J.
, and
Chan
,
C. T.
,
2004
, “
Double-Negative Acoustic Metamaterial
,”
Phys. Rev. E
,
70
(
5 Pt 2
), p.
055602
. 10.1103/PhysRevE.70.055602
17.
Ren
,
X.
,
Das
,
R.
,
Tran
,
P.
,
Ngo
,
T. D.
, and
Xie
,
Y. M.
,
2018
, “
Auxetic Metamaterials and Structures: A Review
,”
Smart Mater. Struct.
,
27
(
2
), p.
023001
. 10.1088/1361-665X/aaa61c
18.
Zhou
,
W.
,
Muhammad
,
Chen
,
W.
,
Chen
,
Z.
, and
Lim
,
C. W.
,
2019
, “
Actively Controllable Flexural Wave Band Gaps in Beam-Type Acoustic Metamaterials With Shunted Piezoelectric Patches
,”
Eur. J. Mech. A-Solid
,
77
, p.
103807
. 10.1016/j.euromechsol.2019.103807
19.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y. Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
. 10.1126/science.289.5485.1734
20.
Huang
,
G. L.
, and
Sun
,
C. T.
,
2010
, “
Band Gaps in a Multiresonator Acoustic Metamaterial
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031003
.
21.
Bilal
,
O. R.
, and
Hussein
,
M. I.
,
2013
, “
Trampoline Metamaterial: Local Resonance Enhancement by Springboards
,”
Appl. Phys. Lett.
,
103
(
11
), p.
111901
. 10.1063/1.4820796
22.
Bilal
,
O. R.
,
Foehr
,
A.
, and
Daraio
,
C.
,
2017
, “
Observation of Trampoline Phenomena in 3D-Printed Metamaterial Plates
,”
Extreme Mech. Lett.
,
15
, pp.
103
107
. 10.1016/j.eml.2017.06.004
23.
Zhou
,
W. J.
,
Wu
,
B.
,
Muhammad
,
D.
,
Huang
,
Q. J.
,
Lu
,
G. L.
,
Chen
,
C. F.
, and
Q
,
W.
,
2018
, “
Actively Tunable Transverse Waves in Soft Membrane-Type Acoustic Metamaterials
,”
J. Appl. Phys.
,
123
(
16
), pp.
165304-1
165304-15
. 10.1063/1.5015979
24.
Hussein
,
M. I.
,
2009
, “
Reduced Bloch Mode Expansion for Periodic Media Band Structure Calculations
,”
Proc. R. Soc. A
,
465
(
2109
), pp.
2825
2848
. 10.1098/rspa.2008.0471
25.
Hussein
,
M. I.
,
2009
, “
Theory of Damped Bloch Waves in Elastic Media
,”
Phys. Rev. B
,
80
(
21
), pp.
1
4
. 10.1103/PhysRevB.80.212301
26.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040802
. 10.1115/1.4026911
27.
Muhammad
, and
Lim
,
C. W.
, “
From Photonic Crystals to Seismic Metamaterials: a Review via Phononic Crystals and Acoustic Metamaterials
,”
Submitted
.
28.
Liu
,
Z. B.
,
Rumpler
,
R.
, and
Feng
,
L. P.
,
2018
, “
Broadband Locally Resonant Metamaterial Sandwich Plate for Improved Noise Insulation in the Coincidence Region
,”
Compos. Struct.
,
200
, pp.
165
172
. 10.1016/j.compstruct.2018.05.033
29.
Orta
,
A. H.
, and
Yilmaz
,
C.
,
2019
, “
Inertial Amplification Induced Phononic Band Gaps Generated by a Compliant Axial to Rotary Motion Conversion Mechanism
,”
J. Sound Vib.
,
439
, pp.
329
343
. 10.1016/j.jsv.2018.10.014
30.
Badreddine Assouar
,
M.
, and
Oudich
,
M.
,
2012
, “
Enlargement of a Locally Resonant Sonic Band Gap by Using Double-Sides Stubbed Phononic Plates
,”
Appl. Phys. Lett.
,
100
(
12
), p.
123506
. 10.1063/1.3696050
31.
Oudich
,
M.
,
Li
,
Y.
,
Assouar
,
B. M.
, and
Hou
,
Z. L.
,
2010
, “
A Sonic Band Gap Based on the Locally Resonant Phononic Plates With Stubs
,”
New J. Phys.
,
12
(
8
), p.
083049
. 10.1088/1367-2630/12/8/083049
32.
Jin
,
Y. B.
,
Bonello
,
B.
,
Moiseyenko
,
R. P.
,
Pennec
,
Y.
,
Boyko
,
O.
, and
Djafari-Rouhani
,
B.
,
2017
, “
Pillar-Type Acoustic Metasurface
,”
Phys. Rev. B
,
96
(
10
), p.
104311
. 10.1103/PhysRevB.96.104311
33.
Hussein
,
M. I.
, and
Frazier
,
M. J.
,
2013
, “
Metadamping: An Emergent Phenomenon in Dissipative Metamaterials
,”
J. Sound Vib.
,
332
(
20
), pp.
4767
4774
. 10.1016/j.jsv.2013.04.041
34.
Bacquet
,
C. L.
,
Al Ba’ba’a
,
H.
,
Frazier
,
M. J.
,
Nouh
,
M.
, and
Hussein
,
M. I.
,
2018
, “
Chapter Two—Metadamping: Dissipation Emergence in Elastic Metamaterials
,”
Adv. Appl. Mech.
,
51
, pp.
115
164
. 10.1016/bs.aams.2018.09.001
35.
Barnhart
,
M. V.
,
Xu
,
X. C.
,
Chen
,
Y. Y.
,
Zhang
,
S.
,
Song
,
J. Z.
, and
Huang
,
G. L.
,
2019
, “
Experimental Demonstration of a Dissipative Multi-Resonator Metamaterial for Broadband Elastic Wave Attenuation
,”
J. Sound Vib.
,
438
, pp.
1
12
. 10.1016/j.jsv.2018.08.035
36.
Chopra
,
A. K.
,
2013
,
Dynamics of Structures: Theorey and Applications to Earthquake Engineering
,
Prentice Hall
,
New Jersey
.
37.
Liu
,
L.
, and
Hussein
,
M. I.
,
2012
, “
Wave Motion in Periodic Flexural Beams and Characterization of the Transition Between Bragg Scattering and Local Resonance
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011003
. 10.1115/1.4004592
38.
Zhu
,
R.
,
Liu
,
X. N.
,
Hu
,
G. K.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2014
, “
A Chiral Elastic Metamaterial Beam for Broadband Vibration Suppression
,”
J. Sound Vib.
,
333
(
10
), pp.
2759
2773
. 10.1016/j.jsv.2014.01.009
You do not currently have access to this content.