Abstract

While Iwan elements have been used to effectively model the stiffness and energy dissipation in bolted joints, integrating the equations of motion of these elements is fairly expensive since implicit schemes, such as Newmark’s methods, need to be used. This paper presents a method of simulating dynamic systems containing nonlinear Iwan elements that significantly reduce the computation cost by using closed-form expressions for stiffness and damping in the microslip regime and an averaging method for regions of time in which no external force is applied. The proposed algorithm is demonstrated on a single degree-of-freedom (SDOF) system to evaluate the range over which it retains accuracy and the improvement in performance it offers. Although the current implementation is limited to SDOF systems, it can be used to simulate the response of each mode in structures exhibiting weak nonlinearity that can be modeled using the modal Iwan approach. To verify this, the dynamic response of a finite element model of a beam assembly, integrated using the Newmark-β method, has been compared with its equivalent modal model integrated using the proposed algorithm. The results show that the algorithm accurately predicts the response in a fraction of the time taken by implicit integration schemes, so long as the modes remain uncoupled and weakly nonlinear.

References

References
1.
Gaul
,
L.
, and
Lenz
,
J.
,
1997
, “
Nonlinear Dynamics of Structures Assembled by Bolted Joints
,”
Acta Mech.
,
125
(
1
), pp.
169
181
. 10.1007/BF01177306
2.
Ungar
,
E.
,
1973
, “
The Status of Engineering Knowledge Concerning the Damping of Built-Up Structures
,”
J. Sound Vib.
,
26
(
1
), pp.
141
154
. 10.1016/S0022-460X(73)80210-X
3.
Segalman
,
D. J.
,
2006
, “
Modelling Joint Friction in Structural Dynamics
,”
Struct. Control Health Monitoring
,
13
(
1
), pp.
430
453
. 10.1002/stc.119
4.
Smallwood
,
D. O.
,
Gregory
,
D. L.
, and
Coleman
,
R. G.
,
2000
, “
Damping Investigations of a Simplified Frictional Shear Joint
,”
Sandia National Lab. (SNL-NM)
,
Albuquerque, NM (US)
;
Sandia National Labs., Livermore, CA (US), Techical Report No. SAND2000-1929C
.
5.
Deaner
,
B. J.
,
Allen
,
M. S.
,
Starr
,
M. J.
,
Segalman
,
D. J.
, and
Sumali
,
H.
,
2015
, “
Application of Viscous and Iwan Modal Damping Models to Experimental Measurements From Bolted Structures
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021012
. 10.1115/1.4029074
6.
Roettgen
,
D. R.
, and
Allen
,
M. S.
,
2017
, “
Nonlinear Characterization of a Bolted, Industrial Structure Using a Modal Framework
,”
Mech. Syst. Signal Process.
,
84
(
B
), pp.
152
170
. 10.1016/j.ymssp.2015.11.010
7.
Iwan
,
W. D.
,
1966
, “
A Distributed-Element Model for Hysteresis and Its Steady-State Dynamic Response
,”
ASME J. Appl. Mech.
,
33
(
4
), pp.
893
900
. 10.1115/1.3625199
8.
Segalman
,
D. J.
,
2005
, “
A Four-Parameter Iwan Model for Lap-Type Joints
,”
ASME J. Appl. Mech.
,
72
(
5
), pp.
752
760
. 10.1115/1.1989354
9.
Segalman
,
D. J.
,
2010
, “
A Modal Approach to Modeling Spatially Distributed Vibration Energy Dissipation
,”
Sandia National Lab
.,
Albuquerque, NM
,
Technical Report No. SAND2010-4763, 993326
.
10.
Lacayo
,
R. M.
,
Deaner
,
B. J.
, and
Allen
,
M. S.
,
2017
, “
A Numerical Study on the Limitations of Modal Iwan Models for Impulsive Excitations
,”
J. Sound Vib.
,
390
(
C
), pp.
118
140
. 10.1016/j.jsv.2016.11.038
11.
Brake
,
M. R. W.
,
2017
, “
A Reduced Iwan Model that Includes Pinning for Bolted Joint Mechanics
,”
Nonlinear Dyn.
,
87
(
2
), pp.
1335
1349
. 10.1007/s11071-016-3117-2
12.
Nayfeh
,
A. H.
,
2011
,
Introduction to Perturbation Techniques
,
John Wiley & Sons
,
New York
.
13.
Sumali
,
H.
, and
Kellogg
,
R. A.
,
2011
, “
Calculating Damping From Ring-Down Using Hilbert Transform and Curve Fitting
,”
Sandia National Lab
.,
Albuquerque, NM
,
Technical Report No. SAND2011-1960C
.
14.
Krack
,
M.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2014
, “
On the Computation of the Slow Dynamics of Nonlinear Modes of Mechanical Systems
,”
Mech. Syst. Signal Process.
,
42
(
1–2
), pp.
71
87
. 10.1016/j.ymssp.2013.08.031
15.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
,
2007
,
Concepts and Applications of Finite Element Analysis
,
John Wiley & Sons
,
New York
.
16.
Ungar
,
E. E.
,
1964
, “
Energy Dissipation at Structural Joints; Mechanisms and Magnitudes
,”
Defense Technical Information Center
,
Fort Belvoir, VA
,
Technical Report
.
17.
Ames
,
N. M.
,
Lauffer
,
J. P.
,
Jew
,
M. D.
,
Segalman
,
D. J.
,
Gregory
,
D. L.
,
Starr
,
M. J.
, and
Resor
,
B. R.
,
2009
, “
Handbook on Dynamics of Jointed Structures
,”
Sandia National Lab
.,
Albuquerque, NM
,
Technical Report No. SAND2009-4164, 1028891
.
18.
Haslam
,
A. H.
,
Chauda
,
G.
,
Kenia
,
N.
,
Rufat-Meix
,
E. S.
,
Allen
,
M. S.
,
Lacayo
,
R. M.
,
Krack
,
M.
, and
Brake
,
M. R. W.
,
2019
,
Nonlinear System Identification for Joints Including Modal Interactions
,
G.
Kerschen
, ed.,
Springer International Publishing
,
Cham
, pp.
79
99
.
19.
Hurty
,
W. C.
,
1965
, “
Dynamic Analysis of Structural Systems Using Component Modes
,”
AIAA J.
,
3
(
4
), pp.
678
685
. 10.2514/3.2947
20.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
. 10.2514/3.4741
21.
Ginsberg
,
J.
,
2001
,
Mechanical and Structural Vibrations: Theory and Applications
,
John Wiley and Sons, Inc.
,
New York
.
You do not currently have access to this content.