Abstract

A fluid–structure interaction (FSI) experiment was performed to study low-frequency (∼10 Hz), high-amplitude (±3.5% of the span) fin motion. This was achieved by placing an Inconel swept-fin at −9.6 deg angle-of-attack within the wake of a roughened cylinder. Speeds between 2.5 and 3.6 m/s produced cylinder diameter-based Reynolds numbers between 190,000 and 280,000, respectively. Detailed descriptions of the geometry, material/structural behavior, fluid properties, and initial conditions are provided to facilitate computational model development. Given the initial conditions, the resulting forced fin behavior was characterized with measurements of the mean and fluctuating velocity upstream of the fin (i.e., within the cylinder wake), fin tip/surface motion, and fin constraint forces/moments. This work provides a detailed experimental dataset of conditions mimicking a crashback event that is also a challenging FSI benchmark problem involving turbulent, vortex-induced structure motion. It has been used as a validation condition for FSI simulations, and it can be used to validate other FSI models as well as identifying strengths and weaknesses of various modeling approaches.

References

References
1.
Bridges
,
D. H.
,
2004
, “
A Detailed Study of the Flow Field of a Submarine Propeller During a Crashback Maneuver
,”
Mississippi State University
,
Technical Report MSSU-ASE-04-1
.
2.
Jessup
,
S.
,
Fry
,
D.
, and
Donnelly
,
M.
,
2006
, “
Unsteady Propeller Performance in Crashback Conditions With and Without a Duct
,”
Proceedings of the 26th Symposium on Naval Hydrodynamics
,
Rome, Italy
,
Sept. 17–22
.
3.
Vyšohlíd
,
M.
, and
Mahesh
,
K.
,
2006
, “
Large Eddy Simulation of Crashback in Marine Propellers
,”
Proceedings of the 26th Symposium on Naval Hydrodynamics
,
Vol. 9
,
Rome, Italy
,
Sept. 17–22
, pp.
237
262
.
4.
Chang
,
P. A.
,
Ebert
,
M. P.
,
Shipman
,
J.
, and
Mahesh
,
K.
,
2008
, “
Prediction of High-Amplitude Forces During Propeller Crashback
,”
DoD HPCMP Users Group Conference, IEEE Xplore
,
Seattle, WA
,
July 14–17
, p.
10401472
.
5.
Bridges
,
D. H.
,
Donnelly
,
M. J.
, and
Park
,
J. T.
,
2008
, “
Experimental Investigation of the Submarine Crashback Maneuver
,”
J. Fluid. Eng.
,
130
(
1
), p.
0111031
. 10.1115/1.2813123
6.
Davoudzadeh
,
F.
,
Taylor
,
L. K.
,
Zierke
,
W. C.
,
Dreyer
,
J. J.
,
McDonald
,
H.
, and
Whitfield
,
D. L.
,
1997
, “
Coupled Navier-Stokes and Equations of Motion Simulation of Submarine Maneuvers, Including Crashback
,”
1997 ASME Fluids Engineering Division Summer Meeting
,
Vancouver, Canada
,
June 22–26
, FEDSM97, Part 16.
7.
Chen
,
B.
, and
Stern
,
F.
,
1999
, “
Computational Fluid Dynamics of Four-Quadrant Marine-Propulsor Flow
,”
J. Ship Res.
,
43
(
4
), pp.
218
228
.
8.
Verma
,
A.
,
Jang
,
H.
, and
Mahesh
,
K.
,
2012
, “
The Effect of an Upstream Hull on a Propeller in Reverse Rotation
,”
J. Fluid Mech.
,
704
, pp.
61
88
. 10.1017/jfm.2012.214
9.
Jang
,
H.
,
Verma
,
A.
, and
Mahesh
,
K.
,
2012
, “
Predicting Unsteady Loads in Marine Propulsor Crashback Using Large Edge Simulation
,”
Int. J. Rotating Mach.
,
2012
, pp.
1
12
. 10.1155/2012/543096
10.
Mouritz
,
A. P.
,
Gellert
,
E.
,
Burchill
,
P.
, and
Challis
,
K.
,
2001
, “
Review of Advanced Composite Structures for Naval Ships and Submarines
,”
Compos. Struct.
,
53
(
1
), pp.
21
24
. 10.1016/S0263-8223(00)00175-6
11.
Young
,
Y. L.
,
2008
, “
Fluid-Structure Interaction Analysis of Flexible Composite Marine Propellers
,”
J. Fluids Struct.
,
24
(
6
), pp.
799
818
. 10.1016/j.jfluidstructs.2007.12.010
12.
Herath
,
M. T.
,
Natarajan
,
S.
,
Prusty
,
B. G.
, and
St. John
,
N.
,
2014
, “
Smoothed Finite Element and Genetic Algorithm Based Optimization for Shape Adaptive Composite Marine Propellers
,”
Compos. Struct.
,
109
(
1
), pp.
189
197
. 10.1016/j.compstruct.2013.10.016
13.
Maljaars
,
P.
,
Kaminski
,
M.
, and
deb Besten
,
H.
,
2018
, “
Boundary Element Modelling Aspects for the Hydro-Elastic Analysis of Flexible Marine Propellers
,”
J. Marine Sci. Eng.
,
6
(
2
), p.
67
. 10.3390/jmse6020067
14.
Triantafyllou
,
G. S.
,
Triantafyllou
,
M. S.
, and
Grosenbaugh
,
M.
,
1993
, “
Optimal Thrust Development in Oscillating Foils With Application to Fish Propulsion
,”
J. Fluids Struct.
,
7
(
2
), pp.
205
224
. 10.1006/jfls.1993.1012
15.
Triantafyllou
,
M. S.
,
Triantafyllou
,
G. S.
, and
Yue
,
D. K. P.
,
2000
, “
Hydrodynamics of Fishlike Swimming
,”
Annu. Rev. Fluid Mech.
,
32
(
1
), pp.
33
53
. 10.1146/annurev.fluid.32.1.33
16.
Quinn
,
D. B.
,
Lauder
,
G. V.
, and
Smits
,
A. J.
,
2014
, “
Scaling the Propulsive Performance of Heaving Flexible Panels
,”
J. Fluid Mech.
,
738
, pp.
250
267
. 10.1017/jfm.2013.597
17.
Lee
,
A. H.
,
Campbell
,
R. L.
,
Craven
,
B. A.
, and
Hambric
,
S. A.
,
2017
, “
Fluid-Structure Interaction Simulation of Vortex-Induced Vibration of a Flexible Hydrofoil
,”
ASME J. Vib. Acoust.
,
139
(
4
), p.
041001
. 10.1115/1.4036453
18.
Clark
,
R.
,
Cox
,
D.
,
Curtiss
,
H. C.
,
Edward
,
J. W.
,
Hall
,
K. C.
,
Peters
,
D. A.
,
Scanlan
,
R.
,
Simiu
,
E.
,
Sisto
,
F.
, and
Strganac
,
T. W.
,
2004
,
A Modern Course in Aeroelasticity: Solid Mechanics and Its Applications
, 4th ed.,
Springer
,
New York
.
19.
de Langre
,
E.
,
Païdoussis
,
M. P.
,
Doaré
,
O.
, and
Modarres-Sadeghi
,
Y.
,
2007
, “
Flutter of Long Flexible Cylinders in Axial Flow
,”
J. Fluid Mech.
,
571
(
25
), pp.
371
389
. 10.1017/S002211200600317X
20.
Gabbai
,
R. D.
, and
Benaroya
,
H.
,
2005
, “
An Overview of Modeling and Experiments of Vortex-Induced Vibration of Circular Cylinders
,”
J. Sound Vib.
,
282
(
3
), pp.
576
616
.
21.
Kalmbach
,
A.
, and
Breuer
,
M.
,
2013
, “
Experimental PIV/V3V Measurements of Vortex-Induced Fluid-Structure Interaction in Turbulent Flow—A New Benchmark FSI-PfS-2a
,”
J. Fluids Struct.
,
42
, pp.
369
387
. 10.1016/j.jfluidstructs.2013.07.004
22.
Zhao
,
J.
,
Leontini
,
J. S.
,
Jacono
,
D. L.
, and
Sheridan
,
J.
,
2014
, “
Fluid-Structure Interaction of a Square Cylinder at Different Angles of Attack
,”
J. Fluid Mech.
,
747
, pp.
688
721
. 10.1017/jfm.2014.167
23.
Sareen
,
A.
,
Zhao
,
J.
,
Lo Jacono
,
D.
,
Sheridan
,
J.
,
Hourigan
,
K.
, and
Thompson
,
M. C.
,
2018
, “
Vortex-Induced Vibration of a Rotating Sphere
,”
J. Fluid Mech.
,
837
(
25
), pp.
258
292
. 10.1017/jfm.2017.847
24.
Campbell
,
R. L.
, and
Paterson
,
E. G.
,
2011
, “
Fluid-Structure Interaction Analysis of Flexible Turbomachinery
,”
J. Fluids Struct.
,
27
(
8
), pp.
1376
1391
. 10.1016/j.jfluidstructs.2011.08.010
25.
Schmitz-Rode
,
T.
,
Graf
,
J.
,
Pfeffer
,
J. G.
,
Buss
,
F.
,
Brucker
,
C.
, and
Gunther
,
R. W.
,
2005
, “
An Expandable Percutaneous Catheter Pump for Left Ventricular Support: Proof of Concept
,”
J. Am. Coll. Cardiol.
,
45
(
11
), p.
1856
. 10.1016/j.jacc.2005.02.071
26.
Throckmorton
,
A.
,
Ballman
,
K.
,
Myers
,
C.
,
Frankel
,
S.
,
Brown
,
J.
, and
Rodefeld
,
M.
,
2008
, “
Performance of a 3-Bladed Propeller Pump to Provide Cavopulmonary Assist in the Failing Fontan Circulation
,”
Ann. Thorac. Surg.
,
86
(
4
), pp.
1343
1347
. 10.1016/j.athoracsur.2008.06.026
27.
Bhavsar
,
S. S.
,
Kapadia
,
J. Y.
,
Chopski
,
S. G.
, and
Throckmorton
,
A. L.
,
2009
, “
Intravascular Mechanical Cavopulmonary Assistance for Patients With Failing Fontan Physiology
,”
Artif. Organs
,
33
(
11
), pp.
977
987
. 10.1111/j.1525-1594.2009.00940.x
28.
Throckmorton
,
A. L.
, and
Kishore
,
R. A.
,
2009
, “
Design of a Protective Cage for an Intravascular Axial Flow Blood Pump to Mechanically Assist the Failing Fontan
,”
Artif. Organs
,
33
(
8
), pp.
611
621
. 10.1111/j.1525-1594.2009.00779.x
29.
Heil
,
M.
, and
Hazel
,
A. L.
,
2011
, “
Fluid-Structure Interaction in Internal Physiological Flows
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
141
162
. 10.1146/annurev-fluid-122109-160703
30.
Dowell
,
E. H.
, and
Hall
,
K. C.
,
2001
, “
Modeling of Fluid-Structure Interaction
,”
Annu. Rev. Fluid Mech.
,
33
(
1
), pp.
445
490
. 10.1146/annurev.fluid.33.1.445
31.
Hessenthaler
,
A.
,
Gaddum
,
N. R.
,
Holub
,
O.
,
Sinkus
,
R.
,
Röhrle
,
O.
, and
Nordsletten
,
D.
,
2016
, “
Experiment for Validation of Fluid-Structure Interaction Models and Algorithms
,”
Int. J. Numer. Methods Biomed. Eng.
,
33
(
9
), p.
e2848
. 10.1002/cnm.2848
32.
Ducoin
,
A.
,
Astolfi
,
J. A.
,
Deniset
,
F.
, and
Sigrist
,
J.-F.
,
2009
, “
An Experimental and Numerical Study of the Hydroelastic Behavior of an Hydrofoil in Transient Pitching Motion
,”
First International Symposium on Marine Propulsors
,
Trondheim, Norway
,
June 22–24
.
33.
Ducoin
,
A.
,
Astolfi
,
J. A.
,
Deniset
,
F.
, and
Sigrist
,
J.-F.
,
2009
, “
Computational and Experimental Investigation of Flow Over a Transient Pitching Hydrofoil
,”
Eur. J. Mech. B/Fluids
,
28
(
6
), pp.
728
743
. 10.1016/j.euromechflu.2009.06.001
34.
Derakhshandeh
,
J. F.
,
Arjomandi
,
M.
,
Dally
,
B.
, and
Cazzolato
,
B.
,
2016
, “
Flow-Induced Vibration of an Elastically Mounted Airfoil Under the Influence of the Wake of a Circular Cylinder
,”
Exp. Therm. Fluid. Sci.
,
74
, pp.
58
72
. 10.1016/j.expthermflusci.2015.12.003
35.
Gomes
,
J. P.
, and
Lienhart
,
H.
,
2006
, “Experimental Study on a Fluid-Structure Interaction Reference Test Case,”
Fluid-Structure Interaction
,
H.-J.
Bungartz
, and
M.
Schafer
, eds.,
Springer-Verlag
,
Berlin
, pp.
356
370
.
36.
de Nayer
,
G.
,
Kalmbach
,
A.
,
Breuer
,
M.
,
Sicklinger
,
S.
, and
Wüchner
,
R.
,
2014
, “
Flow Past a Cylinder With a Flexible Splitter Plate: A Complementary Experimental-Numerical Investigation and a New FSI Test Case (FSI-PfS-1a)
,”
Comput. Fluids
,
99
, pp.
18
43
. 10.1016/j.compfluid.2014.04.020
37.
Deutsch
,
S.
, and
Castano
,
J.
,
1986
, “
Microbubble Skin Friction Reduction on an Axisymmetric Body
,”
Phys. Fluids
,
29
(
11
), pp.
3590
3597
. 10.1063/1.865786
38.
Fontaine
,
A. A.
, and
Deutsch
,
S.
,
1992
, “
The Influence of the Type of Gas on the Reduction of Skin Friction Drag by Microbubble Injection
,”
Exp. Fluids
,
13
(
2–3
), pp.
128
136
. 10.1007/BF00218158
39.
Elbing
,
B. R.
,
Daniel
,
L.
,
Farsiani
,
Y.
, and
Petrin
,
C. E.
,
2018
, “
Design and Validation of a Recirculating, High-Reynolds Number Water Tunnel
,”
J. Fluid. Eng.
,
140
(
8
), p.
081102
. 10.1115/1.4039509
40.
Nakamura
,
Y.
, and
Tomonari
,
Y.
,
1982
, “
The Effects of Surface Roughness on the Flow Past Circular Cylinders at High Reynolds Numbers
,”
J. Fluid Mech.
,
123
, pp.
363
378
. 10.1017/S0022112082003103
41.
Elbing
,
B. R.
,
Solomon
,
M. J.
,
Perlin
,
M.
,
Dowling
,
D. R.
, and
Ceccio
,
S. L.
,
2011
, “
Flow-Induced Degradation of Drag-Reducing Polymer Solutions Within a High-Reynolds Number Turbulent Boundary Layer
,”
J. Fluid Mech.
,
670
, pp.
337
364
. 10.1017/S0022112010005331
42.
Fahnline
,
J. B.
,
Campbell
,
R. L.
, and
Hambric
,
S. A.
,
2004
, “
Modal Analysis Using the Singular Value Decomposition
,”
Pennsylvania State University
,
ARL Technical Report 04-008
.
43.
Tropea
,
C.
,
Scarano
,
F.
,
Westerweel
,
J.
,
Cavone
,
A. A.
,
Meyers
,
J. F.
,
Lee
,
J. W.
, and
Schodl
,
R.
,
2007
, “Particle Based Techniques: Laser Doppler Technique,”
Handbook of Experimental Fluid Mechanics
,
C.
Tropea
,
A. L.
Yarin
, and
J. F.
Foss
, eds.,
Springer
,
New York
, pp.
296
309
.
44.
Elbing
,
B. R.
,
Young
,
S. D.
,
Jonson
,
M. L.
,
Campbell
,
R. L.
,
Craven
,
B. A.
,
Kunz
,
R. F.
, and
Koudela
,
K. L.
,
2014
, “
Hybrid Multi-Material Rotor (HMMR) Phase 2: A Low Frequency, High Amplitude Hydrodynamic Fluid-Structure-Interaction Experiment
,”
Pennsylvania State University
,
ARL Technical Report 13-004
.
45.
Bendat
,
J. S.
, and
Piersol
,
A. G.
,
1980
,
Engineering Applications of Correlation and Spectral Analysis
,
John Wiley & Sons
,
New York
, p.
274
.
46.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
, pp.
147
154
.
47.
Shih
,
W. C. L.
,
Wang
,
C.
,
Coles
,
D.
, and
Roshko
,
A.
,
1993
, “
Experiments on Flow Past Rough Circular Cylinders at Large Reynolds Numbers
,”
J. Wind Eng. Ind. Aerod.
,
49
(
1–3)
, pp.
351
368
. 10.1016/0167-6105(93)90030-R
48.
Bearman
,
P. W.
,
1969
, “
On Vortex Shedding From a Circular Cylinder in the Critical Reynolds Number Regime
,”
J. Fluid Mech.
,
37
(
3
), pp.
577
585
. 10.1017/S0022112069000735
49.
Roshko
,
A.
,
1961
, “
Experiments on the Flow Past a Circular Cylinder at Very High Reynolds Number
,”
J. Fluid Mech.
,
10
(
3
), pp.
345
356
. 10.1017/S0022112061000950
50.
Bendat
,
J. S.
, and
Piersol
,
A. G.
,
1986
,
Random Data: Analysis and Measurement Procedures (Second Edition, Revised and Expanded)
,
John Wiley & Sons
,
New York
, pp.
386
391
.
You do not currently have access to this content.