Abstract

Momentum wheel assemblies (MWAs) play an important role in the attitude adjustment of the satellite by momentum exchange. The micro-vibration induced by the MWAs affects attitude adjustment and leads to unclear imaging and imprecise position. Considering the isolation of multi-directional vibration and transmission of the torque, a novel isolator inspired by rigid-flexible coupling characteristics of folded structure is proposed for the MWAs in this paper. Through the orthogonal arrangement of two Z-folded beams, the isolator has low stiffness in the translational directions and high stiffness in the direction of rotation. An equivalent dynamic model is developed to characterize the isolator. The experimental results verify that the developed model accurately predicts the response of the isolator under different excitations. The results also demonstrate that the prototype can effectively isolate vibration in low-frequency and a wide-frequency range under three excitation directions. Moreover, the isolator has been tested to verify that it has enough stiffness for torque transmission. The design is compact and can be applied to the MWAs of the satellite for multi-direction vibration isolation without influence on the attitude adjustment of the MWAs to the satellite.

References

References
1.
Liu
,
T. X.
,
Lin
,
Y. M.
,
Wang
,
M. Y.
,
Chai
,
H. Y.
, and
Hua
,
H. X.
,
2008
, “
Review of the Spacecraft Vibration Control Technology
,”
J. Astronaut.
,
29
(
1
), pp.
1
12
.
2.
Cobb
,
R. G.
,
Sullivan
,
J. M.
,
Das
,
A.
,
Davis
,
L. P.
,
Hyde
,
T. T.
,
Davis
,
T.
,
Rahman
,
Z. H.
, and
Spanos
,
J. T.
,
1999
, “
Vibration Isolation and Suppression System for Precision Payloads in Space
,”
Smart Mater. Struct.
,
8
(
6
), pp.
798
812
. 10.1088/0964-1726/8/6/309
3.
Findlay
,
E. J.
,
Ruiter
,
A. D.
,
Forbes
,
J. R.
,
Liu
,
H. H. T.
,
Damaren
,
C. J.
, and
Lee
,
J.
,
2013
, “
Magnetic Attitude Control of a Flexible Satellite
,”
J. Guid. Control Dynamics
,
36
(
5
), pp.
1522
1527
. 10.2514/1.57300
4.
Hu
,
Q.
, and
Ma
,
G.
,
2005
, “
Variable Structure Control and Active Vibration Suppression of Flexible Spacecraft During Attitude Maneuver
,”
Aerosp. Sci. Technol.
,
9
(
4
), pp.
307
317
. 10.1016/j.ast.2005.02.001
5.
Calhoun
,
P. C.
,
Novo-Gradac
,
A. M.
, and
Shah
,
N.
,
2017
, “
Spacecraft Alignment Determination and Control for Dual Spacecraft Precision Formation Flying
,”
Acta Astronaut.
,
153
, pp.
349
356
. 10.1016/j.actaastro.2018.02.021
6.
Narayan
,
S. S.
,
Nair
,
P. S.
, and
Ghosal
,
A.
,
2008
, “
Dynamic Interaction of Rotating Momentum Wheels With Spacecraft Elements
,”
J. Sound Vib.
,
315
(
4
), pp.
970
984
. 10.1016/j.jsv.2008.02.020
7.
Kamesh
,
D.
,
Pandiyan
,
R.
, and
Ghosal
,
A.
,
2010
, “
Modeling, Design and Analysis of Low Frequency Platform for Attenuating Micro-Vibration in Spacecraft
,”
J. Sound Vib.
,
329
(
17
), pp.
3431
3450
. 10.1016/j.jsv.2010.03.008
8.
Kamesh
,
D.
,
Pandiyan
,
R.
, and
Ghosal
,
A.
,
2012
, “
Passive Vibration Isolation of Reaction Wheel Disturbances Using a Low Frequency Flexible Space Platform
,”
J. Sound Vib.
,
331
(
6
), pp.
1310
1330
. 10.1016/j.jsv.2011.10.033
9.
Liu
,
C.
,
Jing
,
X.
,
Daley
,
S.
, and
Li
,
F.
,
2015
, “
Recent Advances in Micro-Vibration Isolation
,”
Mech. Syst. Signal Process.
,
56–57
, pp.
55
80
. 10.1016/j.ymssp.2014.10.007
10.
Sabnis
,
A. V.
,
Dendy
,
J. B.
, and
Schmitt
,
F. M.
,
1975
, “
A Magnetically Suspended Large Momentum Wheel
,”
J. Spacecr. Rockets
,
12
(
7
), pp.
420
427
. 10.2514/3.56994
11.
Su
,
Z.
,
Dong
,
W.
,
Chen
,
J.
,
Zhang
,
X.
, and
Wu
,
L.
,
2016
, “
Improving Operational Performance of Magnetically Suspended Flywheel With PM Biased Magnetic Bearings Using Adaptive Resonant Controller and Nonlinear Compensation Method
,”
IEEE Trans. Magn.
,
52
(
7
), pp.
1
4
. 10.1109/TMAG.2016.2517413
12.
McMichael
,
C. K.
,
Ma
,
K. B.
,
Lin
,
M. W.
,
Lamb
,
M. A.
,
Meng
,
R. L.
,
Xue
,
Y. Y.
,
Hor
,
P. H.
, and
Chu
,
W. K.
,
1991
, “
Effects of Material Processing in High Temperature Superconducting Magnetic Bearings
,”
Appl. Phys. Lett.
,
59
(
19
), pp.
2442
2444
. 10.1063/1.105989
13.
Werfel
,
F. N.
,
Floegel-Delor
,
U.
,
Riedel
,
T.
,
Rothfeld
,
R.
,
Wippich
,
D.
, and
Goebel
,
B.
,
2004
, “
Operation and Design Selection of High Temperature Superconducting Magnetic Bearings
,”
Supercond. Sci. Technol.
,
17
(
10
), pp.
1192
1195
. 10.1088/0953-2048/17/10/020
14.
Karnopp
,
D.
,
1995
, “
Active and Semi-Active Vibration Isolation
,”
Curr. Adv. Mech. Des. Prod. VI, Elsevier
, pp.
409
423
. 10.1016/B978-008042140-7/50037-8
15.
Rivin
,
E.
,
2004
, “
Passive Vibration Isolation
,”
ASME Appl. Mech. Rev.
,
57
(
6
), pp.
B31
B32
. 10.1115/1.1849173
16.
Kandasamy
,
R.
,
Cui
,
F.
,
Townsend
,
N.
,
Foo
,
C. C.
,
Guo
,
J.
,
Shenoi
,
A.
, and
Xiong
,
Y.
,
2016
, “
A Review of Vibration Control Methods for Marine Offshore Structures
,”
Ocean Eng.
,
127
, pp.
279
297
. 10.1016/j.oceaneng.2016.10.001
17.
Wilke
,
P. S.
,
Johnson
,
C. D.
, and
Fosness
,
E. R.
,
1998
, “
Whole-Spacecraft Passive Launch Isolation
,”
J. Spacecr. Rockets
,
35
(
5
), pp.
690
694
. 10.2514/2.3386
18.
Lu
,
Z.
,
Wang
,
Z.
,
Zhou
,
Y.
, and
Lu
,
X.
,
2018
, “
Nonlinear Dissipative Devices in Structural Vibration Control: A Review
,”
J. Sound Vib.
,
423
, pp.
18
49
. 10.1016/j.jsv.2018.02.052
19.
Dai
,
H.
,
Jing
,
X.
,
Wang
,
Y.
,
Yue
,
X.
, and
Yuan
,
J.
,
2018
, “
Post-capture Vibration Suppression of Spacecraft via a Bio-Inspired Isolation System
,”
Mech. Syst. Signal Process.
,
105
, pp.
214
240
. 10.1016/j.ymssp.2017.12.015
20.
Ishida
,
S.
,
Suzuki
,
K.
, and
Shimosaka
,
H.
,
2017
, “
Design and Experimental Analysis of Origami-Inspired Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
ASME J. Vib. Acoust.
,
139
(
5
), p.
051004
. 10.1115/1.4036465
21.
Ishida
,
S.
,
Uchida
,
H.
,
Shimosaka
,
H.
, and
Hagiwara
,
I.
,
2017
, “
Design and Numerical Analysis of Vibration Isolators With Quasi-Zero-Stiffness Characteristics Using Bistable Foldable Structures
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
031015
. 10.1115/1.4036096
22.
Lu
,
Z.
,
Yang
,
T.
,
Brennan
,
M. J.
,
Li
,
X.
, and
Liu
,
Z.
,
2014
, “
On the Performance of a Two-Stage Vibration Isolation System Which Has Geometrically Nonlinear Stiffness
,”
ASME J. Vib. Acoust.
,
136
(
6
), p.
064501
. 10.1115/1.4028379
23.
Zhou
,
J.
,
Wang
,
X.
,
Xu
,
D.
, and
Bishop
,
S.
,
2015
, “
Nonlinear Dynamic Characteristics of a Quasi-Zero Stiffness Vibration Isolator With Cam–Roller–Spring Mechanisms
,”
J. Sound Vib.
,
346
, pp.
53
69
. 10.1016/j.jsv.2015.02.005
24.
Carrella
,
A.
,
Brennan
,
M. J.
,
Kovacic
,
I.
, and
Waters
,
T. P.
,
2009
, “
On the Force Transmissibility of a Vibration Isolator With Quasi-Zero-Stiffness
,”
J. Sound Vib.
,
322
(
4–5
), pp.
707
717
. 10.1016/j.jsv.2008.11.034
25.
Zhou
,
J.
,
Xiao
,
Q.
,
Xu
,
D.
,
Ouyang
,
H.
, and
Li
,
Y.
,
2017
, “
A Novel Quasi-Zero-Stiffness Strut and Its Applications in Six-Degree-of-Freedom Vibration Isolation Platform
,”
J. Sound Vib.
,
394
, pp.
59
74
. 10.1016/j.jsv.2017.01.021
26.
Cheng
,
C.
,
Li
,
S.
,
Wang
,
Y.
, and
Jiang
,
X.
,
2016
, “
Force and Displacement Transmissibility of a Quasi-Zero Stiffness Vibration Isolator With Geometric Nonlinear Damping
,”
Nonlinear Dyn.
,
87
(
4
), pp.
2267
2279
. 10.1007/s11071-016-3188-0
27.
Zhou
,
J.
,
Wang
,
K.
,
Xu
,
D.
,
Ouyang
,
H.
, and
Li
,
Y.
,
2017
, “
A Six Degrees-of-Freedom Vibration Isolation Platform Supported by a Hexapod of Quasi-Zero-Stiffness Struts
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
034502
. 10.1115/1.4035715
28.
Wu
,
Z.
,
Jing
,
X.
,
Bian
,
J.
,
Li
,
F.
, and
Allen
,
R.
,
2015
, “
Vibration Isolation by Exploring Bio-Inspired Structural Nonlinearity
,”
Bioinspir Biomim
,
10
(
5
), p.
056015
. 10.1088/1748-3190/10/5/056015
29.
Feng
,
X.
, and
Jing
,
X.
,
2019
, “
Human Body Inspired Vibration Isolation: Beneficial Nonlinear Stiffness, Nonlinear Damping & Nonlinear Inertia
,”
Mech. Syst. Signal Process.
,
117
, pp.
786
812
. 10.1016/j.ymssp.2018.08.040
30.
Sun
,
X.
, and
Jing
,
X.
,
2015
, “
Multi-direction Vibration Isolation With Quasi-Zero Stiffness by Employing Geometrical Nonlinearity
,”
Mech. Syst. Signal Process.
,
62-63
, pp.
149
163
. 10.1016/j.ymssp.2015.01.026
31.
Preumont
,
A.
,
Horodinca
,
M.
,
Romanescu
,
I.
,
Marneffe
,
B. D.
, and
Hanieh
,
A. A.
,
2007
, “
A Six-Axis Single-Stage Active Vibration Isolator Based on Stewart Platform
,”
J. Sound Vib.
,
300
(
3
), pp.
644
661
. 10.1016/j.jsv.2006.07.050
32.
Wang
,
C.
,
Xie
,
X.
,
Chen
,
Y.
, and
Zhang
,
Z.
,
2016
, “
Investigation on Active Vibration Isolation of a Stewart Platform With Piezoelectric Actuators
,”
J. Sound Vib.
,
383
, pp.
1
19
. 10.1016/j.jsv.2016.07.021
33.
Lee
,
D.-O.
,
Park
,
G.
, and
Han
,
J.-H.
,
2016
, “
Hybrid Isolation of Micro Vibrations Induced by Reaction Wheels
,”
J. Sound Vib.
,
363
, pp.
1
17
. 10.1016/j.jsv.2015.10.023
34.
Mao
,
X. Y.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2019
, “
Passive Isolation by Nonlinear Boundaries for Flexible Structures
,”
ASME J. Vib. Acoust.
,
141
(
5
), p.
051003
. 10.1115/1.4042932
35.
Ma
,
J. Y.
,
Song
,
J.
, and
Chen
,
Y.
,
2018
, “
An Origami-Inspired Structure With Graded Stiffness
,”
Int. J. Mech. Sci.
,
136
, pp.
134
142
. 10.1016/j.ijmecsci.2017.12.026
36.
Sadeghi
,
S.
, and
Li
,
S. Y.
,
2019
, “
Fluidic Origami Cellular Structure with Asymmetric Quasi-Zero Stiffness for Low-Frequency Vibration Isolation
,”
Smart Mater. Struct.
,
28
(
6
), p.
065006
. 10.1088/1361-665X/ab143c
37.
Masterson
,
R. A.
,
Miller
,
D. W.
, and
Grogan
,
R. L.
,
2002
, “
Development and Validation of Reaction Wheel Disturbance Models: Empirical Model
,”
J. Sound Vib.
,
249
(
3
), pp.
575
598
. 10.1006/jsvi.2001.3868
38.
Zhou
,
W. Y.
,
Aglietti
,
G. S.
, and
Zhang
,
Z.
,
2011
, “
Modelling and Testing of a Soft Suspension Design for a Reaction/Momentum Wheel Assembly
,”
J. Sound Vib.
,
330
(
18
), pp.
4596
4610
. 10.1016/j.jsv.2011.03.028
You do not currently have access to this content.