Abstract

This paper presents mechanical energy and equivalent viscous damping for a single-degree-of-freedom fractional Zener oscillator. Differential equation of motion is derived in terms of fractional Zener constitutive equation of viscoelastic materials. A virtual fractional oscillator is generated via a state transformation. Then, based on the diffusive model for fractional integrators, the stored energy in fractional derivatives with orders lying in (0, 1) and (2, 3) is determined. Thus, the total mechanical energy in the virtual oscillator is determined. Finally, fractional derivatives are split into three parts: the equivalent viscous damping, equivalent stiffness, and equivalent mass. In this way, the fractional differential equation is simplified into an integer-order differential equation, which is much more convenient to handle in engineering.

References

References
1.
Ibrahim
,
R. A.
,
2008
, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
(
3–5
), pp.
371
452
. 10.1016/j.jsv.2008.01.014
2.
Soong
,
T. T.
, and
Spencer
,
B. F.
Jr.
,
2002
, “
Supplemental Energy Dissipation: State-of-the-Art and State-of-the-Practice
,”
Eng. Struct.
,
24
(
3
), pp.
243
259
. 10.1016/S0141-0296(01)00092-X
3.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
1997
, “
Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids
,”
ASME Appl. Mech. Rev.
,
50
(
1
), pp.
15
67
. 10.1115/1.3101682
4.
Gemant
,
A.
,
1936
, “
A Method of Analyzing Experimental Results Obtained From Elasto-Viscous Bodies
,”
Physics
,
7
(
8
), pp.
311
317
. 10.1063/1.1745400
5.
Mainardi
,
F.
,
2010
,
Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models
,
World Scientific
,
London
.
6.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp.
201
210
. 10.1122/1.549724
7.
Bagley
,
R. L.
,
1979
, “
Applications of Generalized Derivatives to Viscoelasticity
,”
Technical report
,
Air Force Materials Lab
Wright-Patterson AFB OH
.
8.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2010
, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results
,”
ASME Appl. Mech. Rev.
,
63
(
1
), p.
010801
. 10.1115/1.4000563
9.
Padovan
,
J.
,
Chung
,
S.
, and
Guo
,
Y. H.
,
1987
, “
Asymptotic Steady State Behavior of Fractionally Damped Systems
,”
J. Frank. Inst.
,
324
(
3
), pp.
491
511
. 10.1016/0016-0032(87)90057-3
10.
Padovan
,
J.
, and
Guo
,
Y.
,
1988
, “
General Response of Viscoelastic Systems Modelled by Fractional Operators
,”
J. Frank. Inst.
,
325
(
2
), pp.
247
275
. 10.1016/0016-0032(88)90086-5
11.
Kempfle
,
S.
,
Schäfer
,
I.
, and
Beyer
,
H.
,
2002
, “
Fractional Calculus Via Functional Calculus: Theory and Applications
,”
Nonlinear Dyn.
,
29
(
14
), pp.
99
127
. 10.1023/A:1016595107471
12.
Schäfer
,
I.
, and
Kempfle
,
S.
,
2004
, “
Impulse Responses of Fractional Damped Systems
,”
Nonlinear Dyn.
,
38
(
1–4
), pp.
61
68
. 10.1007/s11071-004-3746-8
13.
Chen
,
Y. M.
,
Liu
,
Q. X.
, and
Liu
,
J. K.
,
2019
, “
Time-dependent Decay Rate and Frequency for Free Vibration of Fractional Oscillator
,”
ASME J. Appl. Mech.
,
86
(
2
), p.
024501
. 10.1115/1.4041824
14.
Fukunaga
,
M.
,
2002
, “
On Initial Value Problems in Fractional Differential Equations
,”
Int. J. Appl. Math.
,
9
(
2
), pp.
219
236
.
15.
Fukunaga
,
M.
,
2002
, “
On Uniqueness of the Solutions of Initial Value Problems in Fractional Differential Equations
,”
Int. J. Appl. Math.
,
10
(
2
), pp.
177
190
.
16.
Hartley
,
T. T.
, and
Lorenzo
,
C. F.
,
2002
, “
Control of Initialized Fractional-Order Systems
.
Revised. Technical report, NASA Technical Report No. 2002-211377
.
17.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2008
, “
Initialization of Fractional-Order Operators and Fractional Differential Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
2
), p.
021101
. 10.1115/1.2833585
18.
Wu
,
C.
,
Yuan
,
J.
, and
Shi
,
B.
,
2016
, “
Stability of Initialization Response of Fractional Oscillators
,”
J. Vibroeng.
,
18
(
6
), pp.
4148
4154
. 10.21595/jve.2016.17202
19.
Yuan
,
J.
,
Zhang
,
Y.
,
Liu
,
J.
,
Shi
,
B.
,
Gai
,
M.
, and
Yang
,
S.
,
2017
, “
Mechanical Energy and Equivalent Differential Equations of Motion for Single-Degree-of-Freedom Fractional Oscillators
,”
J. Sound Vib.
,
397
, pp.
192
203
. 10.1016/j.jsv.2017.02.050
20.
Gómez-Aguilar
,
J. F.
,
Rosales-García
,
J. J.
,
Bernal-Alvarado
,
J. J.
,
Córdova-Fraga
,
T.
, and
Guzmán-Cabrera
,
R.
,
2012
, “
Fractional Mechanical Oscillators
,”
Revista Mexicana De física
,
58
(
4
), pp.
348
352
.
21.
Niu
,
J.
,
Li
,
X.
, and
Xing
,
H.
,
2019
, “
Superharmonic Resonance of Fractional-Order Mathieu–Duffing Oscillator
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
7
), p.
071005
. 10.1115/1.4043523
22.
Van Khang
,
N.
, and
Chien
,
T. Q.
,
2016
, “
Subharmonic Resonance of Duffing Oscillator With Fractional-Order Derivative
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051018
. 10.1115/1.4032854
23.
Van Khang
,
N.
,
Thuy
,
B. T.
, and
Chien
,
T. Q.
,
2016
, “
Resonance Oscillation of Third-order Forced Van Der Pol System With Fractional-Order Derivative
,”
ASME J. Comput. Nonlinear. Dyn.
,
11
(
4
), p.
041030
. 10.1115/1.4033555
24.
Artale
,
V.
,
Navarra
,
G.
,
Ricciardello
,
A.
, and
Barone
,
G.
,
2017
, “
Exact Closed-Form Fractional Spectral Moments for Linear Fractional Oscillators Excited by a White Noise
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
3
(
3
), p.
030901
. 10.1115/1.4036700
25.
Yurchenko
,
D.
,
Burlon
,
A.
,
Di Paola
,
M.
,
Failla
,
G.
, and
Pirrotta
,
A.
,
2017
, “
Approximate Analytical Mean-Square Response of An Impacting Stochastic System Oscillator With Fractional Damping
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
3
(
3
), p.
030903
. 10.1115/1.4036701
26.
Spanos
,
P. D.
,
Di Matteo
,
A.
,
Cheng
,
Y.
,
Pirrotta
,
A.
, and
Li
,
J.
,
2016
, “
Galerkin Scheme-Based Determination of Survival Probability of Oscillators With Fractional Derivative Elements
,”
ASME J. Appl. Mech.
,
83
(
12
), p.
121003
. 10.1115/1.4034460
27.
Niedziela
,
M.
, and
Wlazło
,
J.
,
2018
, “
Notes on Computational Aspects of the Fractional-Order Viscoelastic Model
,”
J. Eng. Math.
,
108
(
1
), pp.
91
105
. 10.1007/s10665-017-9911-0
28.
Podlubny
,
I.
,
1998
,
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
,
Elsevier
,
San Diego, CA
.
29.
Trigeassou
,
J.-C.
, and
Maamri
,
N.
,
2019
,
Analysis, Modeling and Stability of Fractional Order Differential Systems 1: The Infinite State Approach
,
John Wiley & Sons
,
London
.
30.
Trigeassou
,
J.-C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2012
, “
State Variables and Transients of Fractional Order Differential Systems
,”
Comput. Math. Appl.
,
64
(
10
), pp.
3117
3140
. 10.1016/j.camwa.2012.03.099
31.
Trigeassou
,
J.-C.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2016
, “
Lyapunov Stability of Noncommensurate Fractional Order Systems: An Energy Balance Approach
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041007
. 10.1115/1.4031841
32.
Trigeassou
,
J.-C.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2013
,
Lyapunov Stability of Linear Fractional Systems: Part 1-Definition of Fractional Energy
,”
ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Portland, OR
,
Aug. 4–7
,
Paper No. DETC2013-12824
,
American Society of Mechanical Engineers Digital Collection
.
33.
Li
,
S.
,
Fang
,
B.
,
Yang
,
T.
,
Zhang
,
Y.
,
Tan
,
L.
, and
Huang
,
W.
,
2012
, “
Dynamics of Vibration Isolation System Obeying Fractional Differentiation
,”
Aircraft Eng. Aerosp. Technol.
,
84
(
2
), pp.
103
108
. 10.1108/00022661211207910
You do not currently have access to this content.