Abstract

This paper deals with numerical predictions of the leakage flowrates, drag power, and rotordynamic force coefficients for three types of helically grooved liquid annular seals, which include a liquid annular seal with helically grooved stator (GS/SR seal), one with helically grooved rotor (SS/GR seal), and one with helical grooves on stator and rotor (GS/GR seal). A novel transient computational fluid dynamics (CFD)-based perturbation method was proposed for the predictions of the leakage flowrates, drag power, and rotordynamic force coefficients of helically grooved liquid annular seals. This method is based on the unsteady Reynolds-averaged Navier–Stokes (RANS) solution with the mesh-deformation technique and the multiple reference frame theory. The time-varying fluid-induced forces acting on the rotor/stator surface were obtained as a response to the time-dependent perturbation of the seal stator surface with the periodic motion, based on the multiple-frequency elliptical-orbit stator whirling model. The frequency-independent rotordynamic force coefficients were determined using curve fit and fast Fourier transform (FFT) in the frequency domain. The CFD-based method was adequately validated by comparisons with the published experiment data of leakage flowrates and fluid response forces for three types of helically grooved liquid annular seals. Based on the transient CFD-based perturbation method, numerical results of the leakage flowrates, drag powers, and rotordynamic force coefficients were presented and compared for three types of helically grooved liquid annular seals at five rotational speeds (n = 0.5 krpm, 1.0 krpm, 2.0 krpm, 3.0 krpm, and 4.0 krpm), paying special attention to the effective stiffness coefficient and effective damping coefficient.

References

References
1.
Muszynska
,
A.
,
2005
,
Rotordynamics
,
CRC Press/Taylor & Francis Group
,
Boca Raton, FL
, pp.
214
222
.
2.
Vance
,
J. M.
,
2010
,
Machinery Vibration and Rotordynamics
,
Wiley
,
New York
, pp.
271
278
.
3.
Childs
,
D. W.
,
1993
,
Turbomachinery Rotordynamics: Phenomena, Modeling and Analysis
,
Wiley
,
New York
, p.
292
.
4.
Untaroiu
,
A.
,
Hayrapetian
,
V.
,
Untaroiu
,
C. D.
,
Wood
,
H. G.
,
Schiavello
,
B.
, and
McGuire
,
J.
,
2013
, “
On the Dynamic Properties of Pump Liquid Seals
,”
ASME J. Fluid Eng.
,
135
(
5
), p.
051104
. 10.1115/1.4023653
5.
Childs
,
D. W.
, and
Vance
,
J. M.
,
1997
, “
Annular Seals and the Rotordynamics of Compressors and Turbines
,”
26th Turbomachinery Symposium
,
Houston, TX
,
Sept. 14–18
, pp.
201
220
.
6.
Marquette
,
O.
,
Childs
,
D.
, and
San Andres
,
L.
,
1997
, “
Eccentricity Effects on the Rotordynamic Coefficients of Plain Annular Seals: Theory Versus Experiment
,”
ASME J. Tribol.
,
119
(
3
), pp.
443
447
. 10.1115/1.2833515
7.
Moreland
,
A. J.
,
Childs
,
D.
, and
Bullock
,
J.
,
2018
, “
Measured Static and Rotordynamic Characteristics of a Smooth-Stator/Grooved-Rotor Liquid Annular Seal
,”
ASME J. Fluid Eng.
,
140
(
10
), p.
101109
. 10.1115/1.4040762
8.
Childs
,
D.
,
Torres
,
J.
, and
Bullock
,
J.
,
2018
, “
Static and Rotordynamic Characteristics of Liquid Annular Seals With a Circumferentially-Grooved Stator and Smooth Rotor Using Three Levels of Circumferential Inlet-Fluid Rotation
,”
ASME Paper No. GT2018-75325
.
9.
Childs
,
D.
,
2013
,
Turbomachinery Rotordynamics With Case Studies
,
Minter Spring Publishing
,
Wellborn, TX
.
10.
Nordmann
,
R. F.
,
Dietzen
,
W.
,
Janson
,
A.
,
Frei
,
A.
, and
Florjancic
,
S.
,
1987
, “
Rotordynamic Coefficients and Leakage Flow of Parallel Grooved Seals and Smooth Seals
,”
Rotordynamic Instability Problems in High-Performance Turbomachinery
,
NASA, Lewis Research Center
, pp.
129
153
.
11.
Massey
,
I.
,
1985
, “
Subsynchronous Vibration Problems in High-Speed Multistage Centrifugal Pumps
,”
14th Turbomachinery and Pump Symposium
,
Houston, TX
,
Sept. 15–17
, pp.
11
16
.
12.
Iwatsubo
,
H.
,
Sheng
,
B. C.
, and
Ono
,
M.
,
1990
, “
Experiment of Static and Dynamic Characteristics of Spiral Grooved Seals
,”
Rotordynamic Instability Problems in High-Performance Turbomachinery
,
NASA, Lewis Research Center
, pp.
223
233
.
13.
Iwatsubo
,
H.
,
Nishino
,
T.
, and
Ishimaru
,
H.
,
1996
, “
A Study on Dynamic Characteristics of Double Spiral Grooved Seals
,”
Rotordynamic Instability Problems in High-Performance Turbomachinery
,
NASA, Lewis Research Center
, pp.
113
134
.
14.
Kanki
,
H.
, and
Kawakami
,
T.
,
1988
, “
Experimental Study on the Static and Dynamic Characteristics of Screw Grooved Seals
,”
ASME J. Vib. Acoust.
,
110
(
3
), pp.
326
331
. 10.1115/1.3269520
15.
Childs
,
D. W.
,
Nolan
,
S. A.
, and
Kilgore
,
J. J.
,
1990
, “
Test Results for Turbulent Annular Seals, Using Smooth Rotors and Helically Grooved Stators
,”
ASME J. Tribol.
,
112
(
2
), pp.
254
258
. 10.1115/1.2920250
16.
Nagai
,
K.
,
Kaneko
,
S.
,
Taura
,
H.
, and
Watanabe
,
Y.
,
2018
, “
Numerical and Experimental Analyses of Static Characteristics for Liquid Annular Seals With Helical Grooves in Seal Stator
,”
ASME J. Tribol.
,
140
(
3
), p.
052201
. 10.1115/1.4039428
17.
Nagai
,
K.
,
Kaneko
,
S.
,
Taura
,
H.
, and
Watanabe
,
Y.
,
2018
, “
Numerical and Experimental Analyses of Dynamic Characteristics for Liquid Annular Seals With Helical Grooves in Seal Stator
,”
ASME J. Tribol.
,
140
(
5
), p.
052201
. 10.1115/1.4039428
18.
Kim
,
C. H.
, and
Childs
,
D. W.
,
1987
, “
Analysis for Rotordynamic Coefficients of Helically-Grooved Turbulent Annular Seals
,”
ASME J. Tribol.
,
109
(
1
), pp.
136
143
. 10.1115/1.3261305
19.
Iwatsubo
,
T.
,
Yang
,
B.
, and
Ibaraki
,
R.
,
1986
, “
Theoretical Approach to Obtaining Dynamic Characteristics of Noncontacting Spiralgrooved Seals
,”
Rotordynamic Instability Problems in High-Performance Turbomachinery
,
NASA, Lewis Research Center
, pp.
155
188
.
20.
Zhai
,
L.
,
Zhu
,
Z.
,
Zhang
,
Z.
,
Guo
,
J.
, and
Cui
,
B.
,
2018
, “
Theoretical Solutions for Dynamic Characteristics of Spiral-Grooved Liquid Seals
,”
J. Tribol. Trans.
,
62
(
1
), pp.
22
33
.
21.
Moore
,
J. J.
,
2003
, “
Three-Dimensional CFD Rotordynamic Analysis of Gas Labyrinth Seals
,”
ASME J. Vib. Acoust.
,
125
(
4
), pp.
427
433
. 10.1115/1.1615248
22.
Pugachev
,
A. O.
, and
Degen
,
H.
,
2012
, “
CFD-Predicted Rotordynamic Coefficients for a 20-Teeth-on-Stator Labyrinth Seal at High Supply Pressure Conditions
,”
ASME Paper No. GT2012-68381.0
.
23.
Ha
,
T.
, and
Choe
,
B.
,
2012
, “
Numerical Simulation of Rotordynamic Coefficients for Eccentric Annular-Type-Plain-Pump Seal Using CFD Analysis
,”
J. Mech. Sci. Technol.
,
26
(
4
), pp.
1043
1048
. 10.1007/s12206-012-0217-x
24.
Kim
,
S. H.
, and
Ha
,
T. W.
,
2016
, “
Prediction of Leakage and Rotordynamic Coefficients for the Circumferential- Groove-Pump Seal Using CFD Analysis
,”
J. Mech. Sci. Technol.
,
30
(
5
), pp.
2037
2043
. 10.1007/s12206-016-0410-4
25.
Mortazavi
,
F.
, and
Palazzolo
,
A.
,
2018
, “
Prediction of Rotordynamic Performance of Smooth Stator-Grooved Rotor Liquid Annular Seals Utilizing Computaitonal Fluid Dynamics
,”
ASME J. Vib. Acoust.
,
140
(
3
), p.
031002
. 10.1115/1.4038437
26.
Chochua
,
G.
, and
Soulas
,
T. A.
,
2007
, “
Numerical Modeling of Rotordynamic Coefficients for Deliberately Roughened Stator Gas Annular Seals
,”
ASME J. Tribol.
,
129
(
2
), pp.
424
429
. 10.1115/1.2647531
27.
Yan
,
X.
,
Li
,
J.
, and
Feng
,
Z.
,
2011
, “
Investigations on the Rotordynamic Characteristics of a Hole-Pattern Seal Using Transient CFD and Periodic Circular Orbit Model
,”
ASME J. Vib. Acoust.
,
133
(
4
), p.
041007
. 10.1115/1.4003403
28.
Nielsen
,
K. K.
,
Janck
,
K.
, and
Underbakke
,
H.
,
2012
, “
Hole-Pattern and Honeycomb Seal Rotordynamic Forces: Validation of CFD-Based Prediction Techniques
,”
ASME J. Eng. Gas Turbine Power
,
134
(
12
), p.
122505
. 10.1115/1.4007344
29.
Sreedharan
,
S. S.
, and
Vannini
,
G.
,
2014
, “
CFD Assessment of Rotordynamic Coefficients in Labyrinth Seals
,”
ASME Paper No. GT2014-26999
.
30.
Li
,
Z.
,
Li
,
J.
, and
Yan
,
X.
,
2013
, “
Multiple Frequencies Elliptical Whirling Orbit Model and Transient RANS Solution Approach to Rotordynamic Coefficients of Annual Gas Seals Prediction
,”
ASME J. Vib. Acoust.
,
135
(
3
), p.
031005
. 10.1115/1.4023143
31.
Li
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2016
, “
Comparison of Rotordynamic Characteristics Predictions for Annular Gas Seals Using the Transient Computational Fluid Dynamic Method Based on Different Single-Frequency and Multi-Frequency Rotor Whirling Models
,”
ASME J. Tribol.
,
138
(
1
), p.
011701
. 10.1115/1.4030807
32.
Paudel
,
W.
,
Watson
,
C.
, and
Wood
,
H.
,
2017
, “
Mixed Helical Labyrinth Groove Seal Optimization Using Computational Fluid Dynamics
,”
ASME Paper No. GT2017-63136
.
33.
Watson
,
C.
, and
Wood
,
H.
,
2017
, “
Optimizing a Helical Groove Seal With Grooves on Both the Rotor and Stator Surfaces
,”
ASME Paper No. GT2017-64687
.
34.
Watson
,
C.
, and
Wood
,
H.
,
2018
, “
Evaluating Configurations of Double Surface Helical Groove Seals Using Computational Fluid Dynamics
,”
ASME Paper No. GT2018-77190
.
35.
2006
,
ANSYS CFX-Solver Theory Guide. Release 11.0
,
ANSYS
,
Canonsburg, PA
.
You do not currently have access to this content.