Abstract

Metastructures can be designed to exhibit extraordinary properties and thus are widely applicable in various fields, such as vibration suppression, wave control, and energy harvesting. In the present work, a dynamic homogenization model is strictly derived for a metabeam (a beam with periodic resonators) by using the asymptotic homogenization method. The homogenization model is validated via comparing the vibration frequencies and associated vibration modes of the metabeam predicted by the present model with exact ones, and it is then used to analyze the linear (or nonlinear) vibration responses of the metabeam subject to a harmonic excitation with a small- (or large-) amplitude. Furthermore, the effect of periodic resonators on the vibration suppression performance of the metabeam is discussed. It is demonstrated that such kind of dynamic homogenization model is of great convenience to predict the vibration responses of metastructures besides the widely studied dispersion relation. Thus, it is expected to be useful for the vibration suppression and control of engineering structures.

References

1.
Ding
,
Y.
,
Liu
,
Z.
,
Qiu
,
C.
, and
Shi
,
J.
,
2007
, “
Metamaterial With Simultaneously Negative Bulk Modulus and Mass Density
,”
Phys. Rev. Lett.
,
99
(
9
), p.
093904
. 10.1103/PhysRevLett.99.093904
2.
Fang
,
N.
,
Xi
,
D.
,
Xu
,
J.
,
Ambati
,
M.
,
Srituravanich
,
W.
,
Sun
,
C.
, and
Zhang
,
X.
,
2006
, “
Ultrasonic Metamaterials With Negative Modulus
,”
Nat. Mater.
,
5
(
6
), pp.
452
456
. 10.1038/nmat1644
3.
Li
,
J.
, and
Chan
,
C. T.
,
2004
, “
Double-Negative Acoustic Metamaterial
,”
Phys. Rev. E
,
70
(
5
), p.
055602
. 10.1103/PhysRevE.70.055602
4.
Yang
,
Z.
,
Mei
,
J.
,
Yang
,
M.
,
Chan
,
N. H.
, and
Sheng
,
P.
,
2008
, “
Membrane-Type Acoustic Metamaterial With Negative Dynamic Mass
,”
Phys. Rev. Lett.
,
101
(
20
), p.
204301
. 10.1103/PhysRevLett.101.204301
5.
Lee
,
S. H.
,
Park
,
C. M.
,
Seo
,
Y. M.
,
Wang
,
Z. G.
, and
Kim
,
C. K.
,
2009
, “
Acoustic Metamaterial With Negative Density
,”
Phys. Lett. A
,
373
(
48
), pp.
4464
4469
. 10.1016/j.physleta.2009.10.013
6.
Norris
,
A. N.
,
2008
, “
Acoustic Cloaking Theory
,”
Proc. R. Soc. A
,
464
(
2097
), pp.
2411
2434
. 10.1098/rspa.2008.0076
7.
Norris
,
A. N.
, and
Shuvalov
,
A. L.
,
2011
, “
Elastic Cloaking Theory
,”
Wave Motion
,
48
(
6
), pp.
525
538
. 10.1016/j.wavemoti.2011.03.002
8.
Chen
,
H.
, and
Chan
,
C. T.
,
2007
, “
Acoustic Cloaking in Three Dimensions Using Acoustic Metamaterials
,”
Appl. Phys. Lett.
,
91
(
18
), p.
183518
. 10.1063/1.2803315
9.
Cummer
,
S. A.
,
Christensen
,
J.
, and
Alù
,
A.
,
2016
, “
Controlling Sound With Acoustic Metamaterials
,”
Nat. Rev. Mater.
,
1
(
3
), p.
16001
. 10.1038/natrevmats.2016.1
10.
Pendry
,
J. B.
,
2000
, “
Negative Refraction Makes a Perfect Lens
,”
Phys. Rev. Lett.
,
85
(
18
), pp.
3966
3969
. 10.1103/PhysRevLett.85.3966
11.
Craster
,
R. V.
, and
Guenneau
,
S.
,
2012
,
Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking
,
Springer Science & Business Media
,
Berlin
.
12.
Zhu
,
J.
,
Christensen
,
J.
,
Jung
,
J.
,
Martin-Moreno
,
L.
,
Yin
,
X.
,
Fok
,
L.
,
Zhang
,
X.
, and
Garcia-Vidal
,
F. J.
,
2011
, “
A Holey-Structured Metamaterial for Acoustic Deep-Subwavelength Imaging
,”
Nat. Phys.
,
7
(
1
), pp.
52
55
. 10.1038/nphys1804
13.
Deng
,
K.
,
Ding
,
Y.
,
He
,
Z.
,
Zhao
,
H.
,
Shi
,
J.
, and
Liu
,
Z.
,
2009
, “
Theoretical Study of Subwavelength Imaging by Acoustic Metamaterial Slabs
,”
J. Appl. Phys.
,
105
(
12
), p.
124909
. 10.1063/1.3153976
14.
Bigoni
,
D.
,
Guenneau
,
S.
,
Movchan
,
A. B.
, and
Brun
,
M.
,
2013
, “
Elastic Metamaterials With Inertial Locally Resonant Structures: Application to Lensing and Localization
,”
Phys. Rev. B
,
87
(
17
), p.
174303
. 10.1103/PhysRevB.87.174303
15.
Liu
,
Y.
,
Yu
,
D.
,
Li
,
L.
,
Zhao
,
H.
,
Wen
,
J.
, and
Wen
,
X.
,
2007
, “
Design Guidelines for Flexural Wave Attenuation of Slender Beams With Local Resonators
,”
Phys. Lett. A
,
362
(
5–6
), pp.
344
347
. 10.1016/j.physleta.2006.10.056
16.
Lou
,
J.
,
He
,
L.
,
Yang
,
J.
,
Kitipornchai
,
S.
, and
Wu
,
H.
,
2018
, “
Wave Propagation in Viscoelastic Phononic Crystal Rods With Internal Resonators
,”
Appl. Acoust.
,
141
, pp.
382
392
. 10.1016/j.apacoust.2018.07.029
17.
Yang
,
Z.
,
Dai
,
H. M.
,
Chan
,
N. H.
,
Ma
,
G. C.
, and
Sheng
,
P.
,
2010
, “
Acoustic Metamaterial Panels for Sound Attenuation in the 50–1000 Hz Regime
,”
Appl. Phys. Lett.
,
96
(
4
), p.
041906
. 10.1063/1.3299007
18.
Ang
,
L. Y. L.
,
Koh
,
Y. K.
, and
Lee
,
H. P.
,
2016
, “
Acoustic Metamaterials: A Potential for Cabin Noise Control in Automobiles and Armored Vehicles
,”
Int. J. Appl. Mech.
,
8
(
5
), p.
1650072
. 10.1142/S1758825116500721
19.
Xiao
,
Y.
,
Wen
,
J.
, and
Wen
,
X.
,
2012
, “
Broadband Locally Resonant Beams Containing Multiple Periodic Arrays of Attached Resonators
,”
Phys. Lett. A
,
376
(
16
), pp.
1384
1390
. 10.1016/j.physleta.2012.02.059
20.
Chen
,
Y. Y.
,
Hu
,
G. K.
, and
Huang
,
G. L.
,
2016
, “
An Adaptive Metamaterial Beam With Hybrid Shunting Circuits for Extremely Broadband Control of Flexural Waves
,”
Smart Mater. Struct.
,
25
(
10
), p.
105036
. 10.1088/0964-1726/25/10/105036
21.
Pai
,
P. F.
,
Peng
,
H.
, and
Jiang
,
S.
,
2014
, “
Acoustic Metamaterial Beams Based on Multi-Frequency Vibration Absorbers
,”
Int. J. Mech. Sci.
,
79
, pp.
195
205
. 10.1016/j.ijmecsci.2013.12.013
22.
Nobrega
,
E.
,
Gautier
,
F.
,
Pelat
,
A.
, and
Dos Santos
,
J.
,
2016
, “
Vibration Band Gaps for Elastic Metamaterial Rods Using Wave Finite Element Method
,”
Mech. Syst. Sig. Process.
,
79
, pp.
192
202
. 10.1016/j.ymssp.2016.02.059
23.
Peng
,
H.
, and
Pai
,
P. F.
,
2014
, “
Acoustic Metamaterial Plates for Elastic Wave Absorption and Structural Vibration Suppression
,”
Int. J. Mech. Sci.
,
89
, pp.
350
361
. 10.1016/j.ijmecsci.2014.09.018
24.
Manktelow
,
K. L.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Weakly Nonlinear Wave Interactions in Multi-Degree of Freedom Periodic Structures
,”
Wave Motion
,
51
(
6
), pp.
886
904
. 10.1016/j.wavemoti.2014.03.003
25.
Manktelow
,
K.
,
Narisetti
,
R. K.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2013
, “
Finite-Element Based Perturbation Analysis of Wave Propagation in Nonlinear Periodic Structures
,”
Mech. Syst. Sig. Process.
,
39
(
1–2
), pp.
32
46
. 10.1016/j.ymssp.2012.04.015
26.
Hussein
,
M. I.
, and
Khajehtourian
,
R.
,
2018
, “
Nonlinear Bloch Waves and Balance Between Hardening and Softening Dispersion
,”
Proc. R. Soc. A
,
474
(
2217
), p.
20180173
. 10.1098/rspa.2018.0173
27.
Khajehtourian
,
R.
, and
Hussein
,
M. I.
,
2014
, “
Dispersion Characteristics of a Nonlinear Elastic Metamaterial
,”
AIP Adv.
,
4
(
12
), p.
124308
. 10.1063/1.4905051
28.
Srivastava
,
A.
,
2015
, “
Elastic Metamaterials and Dynamic Homogenization: A Review
,”
Int. J. Smart Nano Mater.
,
6
(
1
), pp.
41
60
. 10.1080/19475411.2015.1017779
29.
Chen
,
C.-M.
,
Kikuchi
,
N.
, and
Rostam-Abadi
,
F.
,
2004
, “
An Enhanced Asymptotic Homogenization Method of the Static and Dynamics of Elastic Composite Laminates
,”
Comput. Struct.
,
82
(
4–5
), pp.
373
382
. 10.1016/j.compstruc.2003.10.021
30.
Nemat-Nasser
,
S.
,
Willis
,
J. R.
,
Srivastava
,
A.
, and
Amirkhizi
,
A. V.
,
2011
, “
Homogenization of Periodic Elastic Composites and Locally Resonant Sonic Materials
,”
Phys. Rev. B
,
83
(
10
), p.
104103
. 10.1103/PhysRevB.83.104103
31.
Mazur-Śniady
,
K.
,
Woźniak
,
C.
, and
Wierzbicki
,
E.
,
2004
, “
On the Modelling of Dynamic Problems for Plates With a Periodic Structure
,”
Arch. Appl. Mech.
,
74
(
3–4
), pp.
179
190
. 10.1007/s00419-003-0310-9
32.
Baron
,
E.
,
2003
, “
On Dynamic Behaviour of Medium-Thickness Plates With Uniperiodic Structure
,”
Arch. Appl. Mech.
,
73
(
7
), pp.
505
516
. 10.1007/s00419-003-0304-7
33.
Soubestre
,
J.
, and
Boutin
,
C.
,
2012
, “
Non-Local Dynamic Behavior of Linear Fiber Reinforced Materials
,”
Mech. Mater.
,
55
, pp.
16
32
. 10.1016/j.mechmat.2012.06.005
34.
Lou
,
J.
,
Yang
,
J.
,
Kitipornchai
,
S.
, and
Wu
,
H.
,
2018
, “
A Dynamic Homogenization Model for Long-Wavelength Wave Propagation in Corrugated Sandwich Plates
,”
Int. J. Mech. Sci.
,
149
, pp.
27
37
. 10.1016/j.ijmecsci.2018.09.033
35.
Andrianov
,
I. V.
,
Bolshakov
,
V. I.
,
Danishevs’kyy
,
V. V.
, and
Weichert
,
D.
,
2008
, “
Higher Order Asymptotic Homogenization and Wave Propagation in Periodic Composite Materials
,”
Proc. R. Soc. A
,
464
(
2093
), pp.
1181
1201
. 10.1098/rspa.2007.0267
36.
Andrianov
,
I. V.
,
Danishevs’kyy
,
V. V.
,
Ryzhkov
,
O. I.
, and
Weichert
,
D.
,
2013
, “
Dynamic Homogenization and Wave Propagation in a Nonlinear 1D Composite Material
,”
Wave Motion
,
50
(
2
), pp.
271
281
. 10.1016/j.wavemoti.2012.08.013
37.
Craster
,
R. V.
,
Kaplunov
,
J.
, and
Pichugin
,
A. V.
,
2010
, “
High-frequency Homogenization for Periodic Media
,”
Proc. R. Soc. A
,
466
(
2120
), pp.
2341
2362
. 10.1098/rspa.2009.0612
38.
Chen
,
W.
, and
Fish
,
J.
,
2001
, “
A Dispersive Model for Wave Propagation in Periodic Heterogeneous Media Based on Homogenization With Multiple Spatial and Temporal Scales
,”
ASME J. Appl. Mech.
,
68
(
2
), pp.
153
161
. 10.1115/1.1357165
39.
Bacigalupo
,
A.
, and
Gambarotta
,
L.
,
2014
, “
Second-Gradient Homogenized Model for Wave Propagation in Heterogeneous Periodic Media
,”
Int. J. Solids Struct.
,
51
(
5
), pp.
1052
1065
. 10.1016/j.ijsolstr.2013.12.001
40.
Boutin
,
C.
,
Rallu
,
A.
, and
Hans
,
S.
,
2014
, “
Large Scale Modulation of High Frequency Waves in Periodic Elastic Composites
,”
J. Mech. Phys. Solids
,
70
, pp.
362
381
. 10.1016/j.jmps.2014.05.015
41.
Chesnais
,
C.
,
Boutin
,
C.
, and
Hans
,
S.
,
2012
, “
Effects of the Local Resonance on the Wave Propagation in Periodic Frame Structures: Generalized Newtonian Mechanics
,”
J. Acoust. Soc. Am.
,
132
(
4
), pp.
2873
2886
. 10.1121/1.4744975
42.
Airoldi
,
L.
, and
Ruzzene
,
M.
,
2011
, “
Design of Tunable Acoustic Metamaterials Through Periodic Arrays of Resonant Shunted Piezos
,”
New J. Phys.
,
13
(
11
), p.
113010
. 10.1088/1367-2630/13/11/113010
43.
Hui
,
T.
, and
Oskay
,
C.
,
2013
, “
A Nonlocal Homogenization Model for Wave Dispersion in Dissipative Composite Materials
,”
Int. J. Solids Struct.
,
50
(
1
), pp.
38
48
. 10.1016/j.ijsolstr.2012.09.007
44.
Parnell
,
W. J.
, and
Abrahams
,
I. D.
,
2006
, “
Dynamic Homogenization in Periodic Fibre Reinforced Media. Quasi-Static Limit for SH Waves
,”
Wave Motion
,
43
(
6
), pp.
474
498
. 10.1016/j.wavemoti.2006.03.003
45.
Ke
,
L.-L.
,
Yang
,
J.
, and
Kitipornchai
,
S.
,
2010
, “
An Analytical Study on the Nonlinear Vibration of Functionally Graded Beams
,”
Meccanica
,
45
(
6
), pp.
743
752
. 10.1007/s11012-009-9276-1
You do not currently have access to this content.