Abstract

A slice method to determine the boundary conditions between the stern bearing and shaft by dividing the journal in the stern bearing into several slice elements along the axial direction is proposed for the first time. A comprehensive finite element model considering the nonlinear force of the water film and the flexibility of the propeller blade is established for a propeller-shaft system. The long bearing approximation is adopted to calculate the pressure distribution around each journal element in the stern bearing. The mode superposition method is employed. The nonlinear equation of motion is solved iteratively using the Newmark method. A parametric study is implemented to analyze the nonlinear vibration characteristics of the system. It is shown that the real motion state of the journal in the stern bearing can be simulated more precisely by the slice method proposed. The responses of the system alternate among period-one, quasi-periodic, multi-periodic, and chaotic motions as the rotating speed increases. The damping ratio has a significant effect on the dynamic characteristics of the propeller-shaft system. The motion of the system is unstable when the damping ratio is very small. At this time, the modes of the flexible propeller blades can be excited readily. The slice method, which can also be extensively used in similar rotor-bearing systems in the engineering field, is very simple and efficient to analyze the nonlinear vibration characteristics of a flexible propeller-shaft system supported by water film bearings.

References

References
1.
Zhou
,
G. W.
,
Wang
,
J. X.
,
Han
,
Y. F.
,
Wei
,
B.
,
Tang
,
B. P.
, and
Zhong
,
P.
,
2016
, “
An Experimental Study on Film Pressure Circumferential Distribution of Water-Lubricated Rubber Bearings With Multiple Grooves
,”
Tribol. Trans.
,
60
(
3
), pp.
385
391
. 10.1080/10402004.2016.1163760
2.
Han
,
H. S.
,
Lee
,
K. H.
, and
Park
,
S. H.
,
2016
, “
Parametric Study to Identify the Cause of High Torsional Vibration of the Propulsion Shaft in the Ship
,”
Eng. Fail. Anal.
,
59
, pp.
334
346
. 10.1016/j.engfailanal.2015.10.018
3.
Murawski
,
L.
,
2005
, “
Shaft Line Alignment Analysis Taking Ship Construction Flexibility and Deformations Into Consideration
,”
Mar. Struct.
,
18
(
1
), pp.
62
84
. 10.1016/j.marstruc.2005.05.002
4.
Qi
,
L. B.
,
Wu
,
Y. S.
,
Zou
,
M. S.
,
Duan
,
Y.
, and
Shen
,
M. X.
,
2018
, “
Acoustic and Vibrational Characteristics of Propeller-Shaft-Hull Coupled System Based on Sono-Elasticity Theory
,”
J. Vib. Control
,
24
(
9
), pp.
1707
1715
. 10.1177/1077546316668061
5.
Zou
,
M. S.
,
Wu
,
Y. S.
, and
Liu
,
S. X.
,
2018
, “
A Three-Dimensional Sono-Elastic Method of Ships Depth Water With Experimental Validation
,”
Ocean Eng.
,
164
, pp.
238
247
. 10.1016/j.oceaneng.2018.06.052
6.
Zou
,
D. L.
,
Liu
,
L.
,
Rao
,
Z. S.
, and
Ta
,
N.
,
2016
, “
Coupled Longitudinal-Transverse Dynamics of a Marine Propulsion Shafting Under Primary and Internal Resonances
,”
J. Sound Vib.
,
372
, pp.
299
316
. 10.1016/j.jsv.2016.03.001
7.
Sun
,
W.
,
Yan
,
Z.
,
Tan
,
T.
,
Zhao
,
D.
, and
Luo
,
X.
,
2018
, “
Nonlinear Characterization of the Rotor-Bearing System With the Oil-Film and Unbalance Forces Considering the Effect of the Oil-Film Temperature
,”
Nonlinear Dyn.
,
92
(
3
), pp.
1119
1145
. 10.1007/s11071-018-4113-5
8.
Kim
,
T. J.
, and
Han
,
J. S.
,
2010
, “
Comparison of the Dynamic Behavior and Lubrication Characteristics of a Reciprocating Compressor Crankshaft in Both Finite and Short Bearing Models
,”
Tribol. Trans.
,
47
(
1
), pp.
61
69
. 10.1080/05698190490279029
9.
Brancati
,
R.
,
Rocca
,
E.
,
Russo
,
M.
, and
Russo
,
R.
,
1995
, “
Journal Orbits and Their Stability for Rigid Unbalanced Rotors
,”
ASME J. Tribol.
,
117
(
4
), pp.
709
716
. 10.1115/1.2831541
10.
Brancati
,
R.
,
Russo
,
M.
, and
Russo
,
R.
,
1996
, “
On the Stability of Periodic Motions of an Unbalanced Rigid Rotor on Lubricated Journal Bearings
,”
Nonlinear Dyn.
,
10
(
2
), pp.
175
185
. 10.1007/BF00045456
11.
Adiletta
,
G.
,
Guido
,
A. R.
, and
Rossi
,
C.
,
1996
, “
Chaotic Motions of a Rigid Rotor in Short Journal Bearings
,”
Nonlinear Dyn.
,
10
(
3
), pp.
251
269
. 10.1007/BF00045106
12.
Nishimura
,
A.
,
Inoue
,
T.
, and
Watanabe
,
Y.
,
2018
, “
Nonlinear Analysis and Characteristic Variation of Self-Excited Vibration in the Vertical Rotor System due to the Flexible Support of the Journal Bearing
,”
ASME J. Vib. Acoust.
,
140
(
1
), p.
011016
. 10.1115/1.4037520
13.
Shoyama
,
T.
,
2019
, “
Nonlinear Vibration of Saturated Water Journal Bearing and Bifurcation Analysis
,”
ASME J. Vib. Acoust.
,
141
(
2
), p.
021016
. 10.1115/1.4042041
14.
Wang
,
J.
,
Zhou
,
J.
,
Dong
,
D.
,
Yan
,
B.
, and
Huang
,
C.
,
2012
, “
Nonlinear Dynamic Analysis of a Rub-Impact Rotor Supported by Oil Film Bearings
,”
Arch. Appl. Mech.
,
83
(
3
), pp.
413
430
. 10.1007/s00419-012-0688-3
15.
Chen
,
C. L.
, and
Yau
,
H. T.
,
1998
, “
Chaos in the Imbalance Response of a Flexible Rotor Supported by Oil Film Bearings With Non-Linear Suspension
,”
Nonlinear Dyn.
,
16
(
1
), pp.
71
90
. 10.1023/A:1008239206153
16.
Li
,
D.
, and
Xu
,
J.
,
2004
, “
A Method to Determine the Periodic Solution of the Non-Linear Dynamics System
,”
J. Sound Vib.
,
275
(
1–2
), pp.
1
16
. 10.1016/S0022-460X(03)00656-4
17.
Dousti
,
S.
,
Allaire
,
P.
,
Dimond
,
T.
, and
Cao
,
J. M.
,
2016
, “
An Extended Reynold Equation Applicable to High Reduced Reynolds Operation of Journal Bearings
,”
Tribol. Int.
,
102
, pp.
182
197
. 10.1016/j.triboint.2016.04.037
18.
JianPing
,
J.
,
Guang
,
M.
,
Yi
,
S.
, and
SongBo
,
X.
,
2004
, “
On the Non-Linear Dynamic Behavior of a Rotor-Bearing System
,”
J. Sound Vib.
,
274
(
3–5
), pp.
1031
1044
. 10.1016/S0022-460X(03)00663-1
19.
Sun
,
J.
, and
Changlin
,
G.
,
2004
, “
Hydrodynamic Lubrication Analysis of Journal Bearing Considering Misalignment Caused by Shaft Deformation
,”
Tribol. Int.
,
37
(
10
), pp.
841
848
. 10.1016/j.triboint.2004.05.007
20.
Najafi
,
A.
,
Ghazavi
,
M. R.
, and
Jafari
,
A. A.
,
2014
, “
Stability and Hamiltonian Hopf Bifurcation for a Nonlinear Symmetric Bladed Rotor
,”
Nonlinear Dyn.
,
78
(
2
), pp.
1049
1064
. 10.1007/s11071-014-1495-x
21.
Wang
,
L.
,
Cao
,
D.
, and
Huang
,
W.
,
2010
, “
Nonlinear Coupled Dynamics of Flexible Blade-Rotor-Bearing Systems
,”
Tribol. Int.
,
43
(
4
), pp.
759
778
. 10.1016/j.triboint.2009.10.016
22.
Huang
,
X.
,
Su
,
Z.
,
Zhang
,
Z.
, and
Hua
,
H.
,
2018
, “
Vibration Transmission Suppression for Propeller-Shaft System by Hub-Embedded Damping Ring Under Broadband Propeller Force
,”
Nonlinear Dyn.
,
91
(
4
), pp.
2651
2666
. 10.1007/s11071-017-4037-5
23.
Zhang
,
Z.
,
Zhang
,
Z.
,
Huang
,
X.
, and
Hua
,
H.
,
2014
, “
Stability and Transient Dynamics of a Propeller-Shaft System as Induced by Nonlinear Friction Acting on Bearing-Shaft Contact Interface
,”
J. Sound Vib.
,
333
(
12
), pp.
2608
2630
. 10.1016/j.jsv.2014.01.026
24.
Kuran
,
B.
, and
Özgüven
,
H. N.
,
1996
, “
A Modal Superposition Method for Non-Linear Structures
,”
J. Sound Vib.
,
189
(
3
), pp.
315
339
. 10.1006/jsvi.1996.0022
25.
Zou
,
M. S.
,
Wu
,
Y. S.
,
Liu
,
Y. M.
, and
Lin
,
C. G.
,
2013
, “
A Three-Dimensional Hydroelasticity Theory for Ship Structures in Acoustic Field of Shallow Sea
,”
J. Hydrodyn. Ser. B
,
25
(
6
), pp.
929
937
. 10.1016/S1001-6058(13)60442-4
You do not currently have access to this content.