Abstract

This paper provides a non-contact approach to reconstruct the distributed or concentrated force applied to a plate in the time domain. This approach is based on sound pressure measurements and is realized by coupling the techniques of real-time near-field acoustic holography (RT-NAH) and force reconstruction. A microphone array is used to measure the sound pressures in the near field of the plate. The measured sound pressures are taken as the inputs of the RT-NAH to reconstruct the vibration responses, including the normal acceleration, velocity, and displacement, on the surface of the plate. With the reconstructed vibration responses, the equation of motion governing the forced vibration can be further processed to reconstruct the force applied to the plate in the time domain. In the process of reconstructing the vibration responses, a displacement–pressure impulse response function is derived for the first time and is used in the RT-NAH. Results of numerical simulations as well as experiments demonstrate that the proposed approach can identify the location of the force accurately and reconstruct the time history of the force effectively, thereby helping to diagnose the mechanical cause of the radiated noise.

References

References
1.
Inoue
,
H.
,
Harrigan
,
J. J.
, and
Reid
,
S. R.
,
2001
, “
Review of Inverse Analysis for Indirect Measurement of Impact Force
,”
ASME Appl. Mech. Rev.
,
54
(
6
), pp.
503
524
. 10.1115/1.1420194
2.
Sanchez
,
J.
, and
Benaroya
,
H.
,
2014
, “
Review of Force Reconstruction Techniques
,”
J. Sound Vib.
,
333
(
14
), pp.
2999
3018
. 10.1016/j.jsv.2014.02.025
3.
Kawano
,
A.
,
2013
, “
Uniqueness in the Determination of Vibration Sources in Rectangular Germain-Lagrange Plates Using Displacement Measurements Over Line Segments With Arbitrary Small Length
,”
Inverse Probl.
,
29
(
8
), p.
085002
. 10.1088/0266-5611/29/8/085002
4.
Kawano
,
A.
,
2016
, “
Uniqueness Results in the Identification of Distributed Sources Over Germain-Lagrange Plates by Boundary Measurements
,”
Appl. Anal.
,
95
(
9
), pp.
2004
2016
. 10.1080/00036811.2015.1084413
5.
Blau
,
M.
,
1999
, “
Indirect Measurement of Multiple Excitation Force Spectra by FRF Matrix Inversion: Influence of Errors in Statistical Estimates of FRFs and Response Spectra
,”
Acta Acust. Acust.
,
85
(
4
), pp.
464
479
.
6.
Leclere
,
Q.
,
Pezerat
,
C.
,
Laulagnet
,
B.
, and
Polac
,
L.
,
2004
, “
Different Least Squares Approaches to Identify Dynamic Forces Acting on an Engine Cylinder Block
,”
Acta Acust. Acust.
,
90
(
2
), pp.
285
292
.
7.
Aucejo
,
M.
,
2014
, “
Structural Source Identification Using a Generalized Tikhonov Regularization
,”
J. Sound Vib.
,
333
(
22
), pp.
5693
5707
. 10.1016/j.jsv.2014.06.027
8.
Jacquelin
,
E.
,
Bennani
,
A.
, and
Hamelin
,
P.
,
2003
, “
Force Reconstruction: Analysis and Regularization of a Deconvolution Problem
,”
J. Sound Vib.
,
265
(
1
), pp.
81
107
. 10.1016/S0022-460X(02)01441-4
9.
Samagassi
,
S.
,
Khamlichi
,
A.
,
Driouach
,
A.
, and
Jacquelin
,
E.
,
2015
, “
Reconstruction of Multiple Impact Forces by Wavelet Relevance Vector Machine Approach
,”
J. Sound Vib.
,
359
, pp.
56
67
. 10.1016/j.jsv.2015.08.014
10.
Gunawan
,
F. E.
,
Homma
,
H.
, and
Kanto
,
Y.
,
2006
, “
Two-Step B-Splines Regularization Method for Solving an Ill-Posed Problem of Impact-Force Reconstruction
,”
J. Sound Vib.
,
297
(
1–2
), pp.
200
214
. 10.1016/j.jsv.2006.03.036
11.
Amiri
,
A. K.
, and
Bucher
,
C.
,
2015
, “
Derivation of a New Parametric Impulse Response Matrix Utilized for Nodal Wind Load Identification by Response Measurement
,”
J. Sound Vib.
,
344
, pp.
101
113
. 10.1016/j.jsv.2014.12.027
12.
Kammer
,
D. C.
,
1998
, “
Input Force Reconstruction Using a Time Domain Technique
,”
ASME J. Vib. Acoust.
,
120
(
4
), pp.
868
874
. 10.1115/1.2893913
13.
Aucejo
,
M.
,
De Smet
,
O.
, and
Deu
,
J. F.
,
2019
, “
On a Space-Time Regularization for Force Reconstruction Problems
,”
Mech. Syst. Signal Process.
,
118
, pp.
549
567
. 10.1016/j.ymssp.2018.09.002
14.
Allen
,
M. S.
, and
Carne
,
T. G.
,
2008
, “
Delayed, Multi-Step Inverse Structural Filter for Robust Force Identification
,”
Mech. Syst. Signal Process.
,
22
(
5
), pp.
1036
1054
. 10.1016/j.ymssp.2007.11.022
15.
Lourens
,
E.
,
Reynders
,
E.
,
De Roeck
,
G.
,
Degrande
,
G.
, and
Lombaert
,
G.
,
2012
, “
An Augmented Kalman Filter for Force Identification in Structural Dynamics
,”
Mech. Syst. Signal Process.
,
27
, pp.
446
460
. 10.1016/j.ymssp.2011.09.025
16.
Zhang
,
Y.
, and
Mann
J. A.
, III
,
1996
, “
Measuring the Structural Intensity and Force Distribution in Plates
,”
J. Acoust. Soc. Am.
,
99
(
1
), pp.
345
353
. 10.1121/1.414546
17.
Zhang
,
Y.
, and
Mann
J. A.
, III
,
1996
, “
Examples of Using Structural Intensity and the Force Distribution to Study Vibrating Plates
,”
J. Acoust. Soc. Am.
,
99
(
1
), pp.
354
361
. 10.1121/1.414547
18.
Djamaa
,
M. C.
,
Ouelaa
,
N.
,
Pezerat
,
C.
, and
Guyader
,
J. L.
,
2007
, “
Reconstruction of a Distributed Force Applied on a Thin Cylindrical Shell by an Inverse Method and Spatial Filtering
,”
J. Sound Vib.
,
301
(
3–5
), pp.
560
575
. 10.1016/j.jsv.2006.10.021
19.
Pezerat
,
C.
, and
Guyader
,
J. L.
,
2000
, “
Force Analysis Technique: Reconstruction of Force Distribution on Plates
,”
Acta Acust. Acust.
,
86
(
2
), pp.
322
332
.
20.
Pezerat
,
C.
, and
Guyader
,
J. L.
,
2000
, “
Identification of Vibration Sources
,”
Appl. Acoust.
,
61
(
3
), pp.
309
324
. 10.1016/S0003-682X(00)00036-0
21.
Leclere
,
Q.
, and
Pezerat
,
C.
,
2012
, “
Vibration Source Identification Using Corrected Finite Difference Schemes
,”
J. Sound Vib.
,
331
(
6
), pp.
1366
1377
. 10.1016/j.jsv.2011.11.002
22.
Pezerat
,
C.
,
Leclere
,
Q.
,
Totaro
,
N.
, and
Pachebat
,
M.
,
2009
, “
Identification of Vibration Excitations From Acoustic Measurements Using Near Field Acoustic Holography and the Force Analysis Technique
,”
J. Sound Vib.
,
326
(
3–5
), pp.
540
556
. 10.1016/j.jsv.2009.05.010
23.
Williams
,
E. G.
,
1999
,
Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography
,
Academic Press
,
San Diego, CA
.
24.
Grulier
,
V.
,
Paillasseur
,
S.
,
Thomas
,
J. H.
,
Pascal
,
J. C.
, and
Le Roux
,
J. C.
,
2009
, “
Forward Propagation of Time Evolving Acoustic Pressure: Formulation and Investigation of the Impulse Response in Time-Wavenumber Domain
,”
J. Acoust. Soc. Am.
,
126
(
5
), pp.
2367
2378
. 10.1121/1.3216916
25.
Thomas
,
J. H.
,
Grulier
,
V.
,
Paillasseur
,
S.
,
Pascal
,
J. C.
, and
Le Roux
,
J. C.
,
2010
, “
Real-Time Near-Field Acoustic Holography for Continuously Visualizing Nonstationary Acoustic Fields
,”
J. Acoust. Soc. Am.
,
128
(
6
), pp.
3554
3567
. 10.1121/1.3504656
26.
Paillasseur
,
S.
,
Thomas
,
J. H.
, and
Pascal
,
J. C.
,
2011
, “
Regularization for Improving the Deconvolution in Real-Time Near-Field Acoustic Holography
,”
J. Acoust. Soc. Am.
,
129
(
6
), pp.
3777
3787
. 10.1121/1.3586790
27.
Zhang
,
X. Z.
,
Bi
,
C. X.
,
Zhang
,
Y. B.
, and
Geng
,
L.
,
2015
, “
Real-Time Nearfield Acoustic Holography for Reconstructing the Instantaneous Surface Normal Velocity
,”
Mech. Syst. Signal Process.
,
52
, pp.
663
671
. 10.1016/j.ymssp.2014.06.009
28.
Geng
,
L.
,
Zhang
,
X. Z.
, and
Bi
,
C. X.
,
2015
, “
Reconstruction of Transient Vibration and Sound Radiation of an Impacted Plate Using Time Domain Plane Wave Superposition Method
,”
J. Sound Vib.
,
344
, pp.
114
125
. 10.1016/j.jsv.2015.01.046
29.
Williams
,
E. G.
,
2001
, “
Regularization Methods for Near-Field Acoustical Holography
,”
J. Acoust. Soc. Am.
,
110
(
4
), pp.
1976
1988
. 10.1121/1.1404381
30.
Hansen
,
P. C.
, and
O’Leary
,
D. P.
,
1993
, “
The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems
,”
SIAM J. Sci. Comput.
,
14
(
6
), pp.
1487
1503
. 10.1137/0914086
31.
Zhang
,
X. Z.
,
Bi
,
C. X.
,
Zhang
,
Y. B.
, and
Xu
,
L.
,
2011
, “
Transient Nearfield Acoustic Holography Based on an Interpolated Time-Domain Equivalent Source Method
,”
J. Acoust. Soc. Am.
,
130
(
3
), pp.
1430
1440
. 10.1121/1.3621005
32.
Pan
,
S.
,
Jiang
,
W.
,
Zhang
,
H.
, and
Xiang
,
S.
,
2014
, “
Modeling Transient Sound Propagation Over an Absorbing Plane by a Half-Space Interpolated Time-Domain Equivalent Source Method
,”
J. Acoust. Soc. Am.
,
136
(
4
), pp.
1744
1755
. 10.1121/1.4895705
33.
Bi
,
C. X.
,
Zhang
,
Y.
,
Zhang
,
X. Z.
, and
Zhang
,
Y. B.
,
2018
, “
Stability Analysis of Inverse Time Domain Boundary Element Method for Near-Field Acoustic Holography
,”
J. Acoust. Soc. Am.
,
143
(
3
), pp.
1308
1317
. 10.1121/1.5026024
34.
Pierce
,
A. D.
,
1989
,
Acoustics: An Introduction to its Physical Principles and Applications
,
Acoustical Society of America
,
New York
.
You do not currently have access to this content.