Abstract

The accuracy of the physical parameters and excitation parameters of the under-chassis equipment has a significant impact on investigations of the coupled vibration of the vehicle body and the under-chassis equipment. In this study, an equipment vibration isolator test bench is used to develop a physical parameter identification method based on the free vibration acceleration response of the equipment and an excitation parameter identification method based on the forced vibration acceleration response. The equipment mass parameter and the center of the gravity position parameter can be obtained first through a static load test, and then, the inertia parameters can be obtained through a dynamic test. Identification of the excitation parameters of the equipment is based on the physical parameters and the acceleration response. The accuracy of the physical parameters directly affects the excitation parameter identification results. The larger the frequency ratio, the smaller the identification error will be, and the larger the damping ratio, the larger the identification error will be. The identification test results of single-frequency excitation and multifrequency excitation show that the proposed excitation parameter identification method has high accuracy.

References

1.
Zhou
,
J. S.
,
Goodall
,
R. M.
,
Ren
,
L. H.
, and
Zhang
,
H.
,
2009
, “
Influences of Car Body Vertical Flexibility on Ride Quality of Passenger Railway Vehicles
,”
Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit
,
223
(
5
), pp.
461
471
. 10.1243/09544097JRRT272
2.
Schandl
,
G.
,
Lungner
,
P.
,
Benatzky
,
C.
,
Kozek
,
M.
, and
Stribersky
,
A.
,
2007
, “
Comfort Enhancement by an Active Vibration Reduction System for a Flexible Railway Car Body
,”
Vehicle Syst. Dyn.
,
45
(
9
), pp.
835
847
. 10.1080/00423110601145952
3.
Gong
,
D.
,
Zhou
,
J. S.
, and
Sun
,
W. J.
,
2016
, “
Influence of Under-Chassis Suspended Equipment on High-Speed EMU Trains and the Design of Suspension Parameters
,”
Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit
,
230
(
8
), pp.
1790
1802
. 10.1177/0954409715614601
4.
Sun
,
W. J.
,
Zhou
,
J. S.
,
Gong
,
D.
, and
You
,
T. W.
,
2016
, “
Analysis of Modal Frequency Optimization of Railway Vehicle Car Body
,”
Adv. Mech. Eng.
,
8
(
4
), pp.
1
12
.
5.
Gong
,
D.
,
Duan
,
Y.
,
Wang
,
K.
, and
Zhou
,
J. S.
,
2019
, “
Modelling Rubber Dynamic Stiffness for Numerical Predictions of the Effects of Temperature and Speed on the Vibration of a Railway Vehicle Car Body
,”
J. Sound Vib.
,
449
, pp.
121
139
. 10.1016/j.jsv.2019.02.037
6.
Orvnas
,
A.
,
2010
, “
Methods for Reducing Vertical Car Body Vibrations of a Rail Vehicle
,” Report in
Railway Technology, The KTH Railway Group
,
Stockholm, Sweden
.
7.
Sun
,
Y.
,
Gong
,
D.
, and
Zhou
,
J. S.
,
2016
, “
Study on Vibration Reduction Design of Suspended Equipment of High Speed Railway Vehicles
,”
J. Phys. Conf. Ser.
,
744
(
1
), p.
012212
. 10.1088/1742-6596/744/1/012212
8.
Almeida
,
R. A. B.
,
Urgueira
,
A. P. V.
, and
Maia
,
N. M. M.
,
2007
, “
Identification of Rigid Body Properties From Vibration Measurements
,”
J. Sound Vib.
,
299
(
4–5
), pp.
884
899
. 10.1016/j.jsv.2006.07.043
9.
Schedlinski
,
C.
, and
Link
,
M.
,
2001
, “
A Survey of Current Inertia Parameter Identification Methods
,”
Mech. Syst. Signal Process.
,
15
(
1
), pp.
189
211
. 10.1006/mssp.2000.1345
10.
Genta
,
G.
, and
Delprete
,
C.
,
1994
, “
Some Considerations on the Experimental Determination of Moments of Inertia
,”
Meccanica
,
29
(
2
), pp.
125
141
. 10.1007/BF01007497
11.
Ringegni
,
P. L.
,
Actis
,
M. D.
, and
Patanella
,
A. J.
,
2001
, “
An Experimental Technique for Determining Mass Inertial Properties of Irregular Shape Bodies and Mechanical Assemblies
,”
Measurement
,
29
(
1
), pp.
63
75
. 10.1016/S0263-2241(00)00028-2
12.
Hou
,
Z. C.
,
Lu
,
Y. N.
,
Lao
,
Y. X.
, and
Liu
,
D.
,
2009
, “
A New Trifilar Pendulum Approach to Identify All Inertia Parameters of a Rigid Body or Assembly
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1270
1280
. 10.1016/j.mechmachtheory.2008.07.004
13.
Okuzumi
,
H.
,
1994
, “
Identification of the Rigid Body Characteristics of a Power Plant by Using Experimentally Obtained Transfer Functions
,”
Int. J. Veh. Des.
,
15
(
3–5
), pp.
425
434
.
14.
Lee
,
H.
,
Lee
,
Y. B.
, and
Park
,
Y. S.
,
1999
, “
Response and Excitation Points Selection for Accurate Rigid Body Inertia Properties Identification
,”
Mech. Syst. Signal Process.
,
13
(
4
), pp.
571
592
. 10.1006/mssp.1998.0190
15.
Hahn
,
H.
,
Leimbach
,
K. D.
, and
Piepenbrink
,
A.
,
1994
, “
Inertia Parameter Identification of Rigid Bodies Using a Multi-Axis Test Facility
,”
Proceedings of the 3rd IEEE Conference on Control Applications
,
Glasgow
,
Aug. 24–26
, pp.
1735
1737
. http://dx.doi.org/10.1109/CCA.1994.381294
16.
Inoue
,
H.
,
HarrigaIl
,
J. J.
, and
Reid
,
S. R.
,
2001
, “
Review of Inverse Analysis for Indirect Measurement of Impact Force
,”
ASME Appl. Mech. Rev.
,
54
(
6
), pp.
503
524
. 10.1115/1.1420194
17.
Xu
,
F.
,
Chen
,
H. H.
, and
Bao
,
M.
,
2002
, “
Current Status and Future of Mechanical Vibration Load Identification Research
,”
China Mech. Eng.
,
13
(
6
), pp.
526
531
.
18.
Uhl
,
T.
,
2007
, “
The Inverse Identification Problem and Its Technical Application
,”
Arch. Appl. Mech.
,
77
(
5
), pp.
325
337
. 10.1007/s00419-006-0086-9
19.
Bartlett
,
F. D.
, and
Flannelly
,
W. G.
,
1979
, “
Model Verification of Force Determination for Measuring Vibration Loads
,”
J. Am. Hel. Soc.
,
24
(
2
), pp.
10
18
. 10.4050/JAHS.24.2.10
20.
Giansante
,
N.
,
Jones
,
R.
, and
Calapodas
,
N. J.
,
1981
, “
Determination of In-Flight Helicopter Loads
,”
J. Am. Hel. Soc.
,
27
(
3
), pp.
58
64
. 10.4050/JAHS.27.3.58
21.
Okubo
,
N.
,
Tanabe
,
S.
, and
Tatsuno
,
T.
,
1985
, “
Identification of Forces Generated by a Machine Under Operation Condition
,”
Proceedings of the 3rd International Modal Analysis Conference
,
Orlando, FL
,
Jan. 28–31
, pp.
920
927
.
22.
Yu
,
L.
, and
Chan
,
T. H. T.
,
2003
, “
Moving Force Identification Based on the Frequency-Time Domain Method
,”
J. Sound Vib.
,
261
(
2
), pp.
329
349
. 10.1016/S0022-460X(02)00991-4
23.
Liu
,
Y.
, and
Shepard
,
W. S.
,
2005
, “
Dynamic Force Identification Based on Enhanced Least Squares and Total Least-Squares Schemes in the Frequency Domain
,”
J. Sound Vib.
,
282
(
1
), pp.
37
60
. 10.1016/j.jsv.2004.02.041
24.
Lin
,
D. C.
,
2010
, “
Input Estimation for Nonlinear Systems
,”
Inverse Probl. Sci. Eng.
,
18
(
5
), pp.
673
689
. 10.1080/17415971003698623
25.
Gunawan
,
F. E.
,
Homma
,
H.
, and
Morisawa
,
Y.
,
2008
, “
Impact Force Estimation by Quadratic Spline Approximation
,”
J. Solid Mech. Mater. Eng.
,
2
(
8
), pp.
1092
1103
. 10.1299/jmmp.2.1092
26.
Desanghere
,
G.
, and
Snoeys
,
R.
,
1985
, “
Indirect Identification of Excitation Forces by Modal Coordinate Transformation
,”
Proceedings of the 3rd International Modal Analysis Conference
,
Orlando, FL
,
Jan. 28–31
, pp.
685
690
.
27.
Kreitinger
,
T. J.
,
Wang
,
M. L.
, and
Schreyer
,
H. L.
,
1992
, “
Non-Parametric Force Identification From Structural Response
,”
Soil Dyn. Earthquake Eng.
,
11
(
5
), pp.
269
277
. 10.1016/0267-7261(92)90043-D
28.
Ma
,
C. K.
,
Lin
,
D. C.
, and
Chang
,
J. M.
,
1999
, “
Estimation of Forces Generated by a Machine Mounted Upon Isolators Under Operating Conditions
,”
J. Franklin Inst.
,
336
(
5
), pp.
875
892
. 10.1016/S0016-0032(99)00012-5
29.
Kazemi
,
M.
,
Hematiyan
,
M. R.
, and
Ghavami
,
K.
,
2008
, “
An Efficient Method for Dynamic Load Identification Based on Structural Response
,”
International Conference on Engineering Optimization
,
Rio de Janeiro, Brazil
,
June 1–5
, pp.
1
5
. https://www.researchgate.net/publication/253723719
30.
Gunawan
,
F. E.
,
Homma
,
H.
, and
Kanto
,
Y.
,
2006
, “
Two-Sep B-Splines Regularization Method for Solving an Ill-Posed Problem of Impact-Force Reconstruction
,”
J. Sound Vib.
,
297
(
1–2
), pp.
200
214
. 10.1016/j.jsv.2006.03.036
31.
Masri
,
S. F.
,
Chassiakos
,
A. G.
, and
Caughey
,
T. K.
,
1993
, “
Identification of Nonlinear Dynamic Systems Using Neural Networks
,”
ASME J. Appl. Mech.
,
60
(
1
), pp.
123
133
. 10.1115/1.2900734
32.
Yan
,
G.
, and
Zhou
,
L.
,
2009
, “
Impact Load Identification of Composite Structure Using Genetic Algorithms
,”
J. Sound Vib.
,
319
(
3–5
), pp.
869
884
. 10.1016/j.jsv.2008.06.051
33.
Hu
,
N.
,
Fukunaga
,
H.
,
Matsumoto
,
S.
,
Yang
,
B.
, and
Peng
,
X. H.
,
2007
, “
An Efficient Approach for Identifying Impact Force Using Embedded Piezoelectric Sensors
,”
Int. J. Impact Eng.
,
34
(
7
), pp.
1258
1271
. 10.1016/j.ijimpeng.2006.05.004
34.
Pezerat
,
C.
, and
Guyader
,
J. L.
,
1995
, “
Two Inverse Methods for Localization of External Sources Exciting a Beam
,”
Acta Acust.
,
3
(
1
), pp.
1
10
.
35.
Pezerat
,
C.
, and
Guyader
,
J. L.
,
2000
, “
Identification of Vibration Sources
,”
Appl. Acoust.
,
61
(
3
), pp.
309
324
. 10.1016/S0003-682X(00)00036-0
36.
Janssens
,
M. H. A.
, and
Verheij
,
J. W.
,
2000
, “
A Pseudo-Forces Methodology to Be Used in Characterization of Structure-Borne Sound Sources
,”
Appl. Acoust.
,
61
(
3
), pp.
285
308
. 10.1016/S0003-682X(00)00035-9
37.
Janssens
,
M. H. A.
,
Verheij
,
J. W.
, and
Loyau
,
T.
,
2002
, “
Experimental Example of the Pseudo-Forces Method Used in Characterization of a Structure-Borne Sound Source
,”
Appl. Acoust.
,
63
(
1
), pp.
9
34
. 10.1016/S0003-682X(01)00023-8
38.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N.-C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. Math., Phys. Eng. Sci.
,
454
(
1971
), pp.
903
995
. 10.1098/rspa.1998.0193
You do not currently have access to this content.