Abstract

Most fluid flows of practical applications are turbulent. In flows involving interactions with flexible structures, such as an aircraft skin, the knowledge of turbulent wall-pressure fluctuations is critical. Both measurements and direct numerical simulations of the wall-pressure fluctuations are difficult and costly. Therefore, the use of the semi-empirical turbulent wall-pressure fluctuation models is wide spread. One of the most widely used models is that due to Corcos (Resolution of Pressure in Turbulence,” J. Acoust. Soc. Am., 35(2), pp. 192–199). The biggest advantages of this model are simplicity and ease of use. However, the model has several weaknesses as well and therefore many models have been proposed to address them. In this paper, we briefly review existing models and then propose a model that remedies their weaknesses. The proposed model keeps the simplicity of the Corcos model and it is given in both space-frequency and wavenumber-frequency spaces. The new model accurately captures the convective peak and shows better agreement with experimental data at lower wavenumbers.

References

1.
Willmarth
,
W. W.
, and
Wooldridge
,
C. E.
,
1962
, “
Measurements of the Fluctuating Pressure at the Wall Beneath a Thick Turbulent Boundary Layer
,”
J. Fluid Mech.
,
14
(
2
), pp.
187
210
. 10.1017/S0022112062001160
2.
Favre
,
A. J.
,
Gaviglio
,
J. J.
, and
Dumas
,
R.
,
1957
, “
Space-Time Double Correlations and Spectra in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
2
(
4
), pp.
313
342
. 10.1017/S0022112057000166
3.
Willmarth
,
W. W.
, and
Wooldridge
,
C. E.
,
1963
, “
Measurements of the Correlation Between the Fluctuating Velocities and the Fluctuating Wall Pressure in a Thick Turbulent Boundary Layer
,”
Agard Report 456
.
4.
Corcos
,
G. M.
,
1963
, “
Resolution of Pressure in Turbulence
,”
J. Acoust. Soc. Am.
,
35
(
2
), pp.
192
199
. 10.1121/1.1918431
5.
Williams
,
J. E. F.
,
1982
, “
Boundary-Layer Pressures and the Corcos Model: A Development to Incorporate Low Wavenumber Constraints
,”
J. Fluid Mech.
,
125
(
1
), pp.
9
25
. 10.1017/S0022112082003218
6.
Crighton
,
D. G.
,
Dowling
,
A. P.
,
Ffowcs Williams
,
J. E.
,
Heckl
,
M.
, and
Leppington
,
F. G.
,
1992
, “Flow Noise on Surfaces,”
Modern Methods in Analytical Acoustics, Lecture Notes
,
Springer-Verlag
,
Berlin
, pp.
452
509
.
7.
Hwang
,
Y. F.
, and
Geib
,
F. E.
,
1984
, “
Estimation of the Wavevector-Frequency Spectrum of Turbulent Boundary Layer Wall Pressure by Multiple Linear Regression
,”
ASME J. Vib., Acoust., Stress, Reliab.
,
106
(
3
), pp.
334
342
. 10.1115/1.3269199
8.
Graham
,
W. R.
,
1997
, “
A Comparison of Models for the Wavenumber-Frequency Spectra of Turbulent Boundary Layer Pressures
,”
J. Sound Vib.
,
206
(
4
), pp.
541
565
. 10.1006/jsvi.1997.1114
9.
Efimtsov
,
B. M.
,
1982
, “
Characteristics of the Field of Turbulent Wall Pressure Fluctuations at Large Reynolds Numbers
,”
Sov. Phys. Acoust.
,
28
(
4
), pp.
289
292
.
10.
Smol'yakov
,
A. V.
, and
Tkachenko
,
V. M.
,
1991
, “
Model of a Field of Pseudosonic Turbulent Wall Pressures and Experimental Data
,”
Sov. Phys. Acoust.
,
37
(
6
), pp.
627
631
.
11.
Chase
,
D. M.
,
1987
, “
The Character of the Turbulent Wall Pressure Spectrum at Subconvective Wavenumbers and a Suggested Comprehensive Model
,”
J. Sound Vib.
,
112
(
1
), pp.
125
147
. 10.1016/S0022-460X(87)80098-6
12.
Chase
,
D. M.
,
1980
, “
Modeling the Wavevector-Frequency Spectrum of Turbulent Boundary Layer Wall Pressure
,”
J. Sound Vib.
,
70
(
1
), pp.
29
67
. 10.1016/0022-460X(80)90553-2
13.
Caiazzo
,
A.
,
D’Amico
,
R.
, and
Desmet
,
W.
,
2016
, “
A Generalized Corcos Model for Modelling Turbulent Boundary Layer Wall Pressure Fluctuations
,”
J. Sound Vib.
,
372
(
6
), pp.
192
210
. 10.1016/j.jsv.2016.02.036
14.
Willmarth
,
W. W.
,
1975
, “
Pressure Fluctuations Beneath Turbulent Boundary Layers
,”
Annu. Rev. Fluid Mech.
,
7
(
1
), pp.
13
38
. 10.1146/annurev.fl.07.010175.000305
15.
Eckelmann
,
H.
,
1988
, “
A Review of Knowledge on Pressure Fluctuations
,”
Proceedings of the Zoran Zaric Memorial Intenanational Seminar on Near-Wall Turbulence
,
Dubrovnik, Yugoslavia
,
May 16–20
, pp.
328
347
.
16.
Bull
,
M. K.
,
1996
, “
Wall Pressure Fluctuations Beneath Turbulent Boundary Layers: Some Reflections on Forty Years of Research
,”
J. Sound Vib.
,
190
(
3
), pp.
299
315
. 10.1006/jsvi.1996.0066
17.
Juve
,
D.
,
Berton
,
M.
, and
Salze
,
E.
,
2015
, “Spectral Properties of Wall-Pressure Fluctuations and Their Estimation From Computational Fluid Dynamics,”
Flow Induced Noise and Vibration Issues and Aspects
,
Spring Intl Publishing
,
Switzerland
.
18.
Singer
,
B. A.
,
1996
, “
Turbulent Wall-Pressure Fluctuations: New Model for Off-Axis Cross-Spectral Density
,”
NASA Contractor Report, 198297
.
19.
Choi
,
H.
, and
Moin
,
P.
,
1990
, “
On the Space–Time Characteristics of Wall- Pressure Fluctuations
,”
Phys. Fluids A
,
2
(
8
), pp.
1450
1460
. 10.1063/1.857593
20.
Viazzo
,
S.
,
Dejoan
,
A.
, and
Schiestel
,
R.
,
2001
, “
Spectral Features of the Wall-Pressure Fluctuations in Turbulent Wall Flows With and Without Perturbations Using LES
,”
Int. J. Heat Fluid Flow
,
22
(
1
), pp.
39
52
. 10.1016/S0142-727X(00)00074-6
21.
Farabee
,
T.
, and
Casarella
,
M. J.
,
1991
, “
Spectral Features of Wall Pressure Fluctuations Beneath Turbulent Boundary Layers
,”
Phys. Fluids
,
3
(
10
), pp.
2410
2420
. 10.1063/1.858179
22.
Abraham
,
B. M.
, and
Keith
,
W. L.
,
1998
, “
Direct Measurements of Turbulent Boundary Layer Wall Pressure Wavenumber-Frequency Spectra
,”
ASME J. Fluids Eng.
,
120
(
1
), pp.
29
39
. 10.1115/1.2819657
23.
Leclercq
,
D. J.
, and
Bohineust
,
X.
,
2002
, “
Investigation and Modeling of the Wall Pressure Field Beneath a Turbulent Boundary Layer at Low and Medium Frequencies
,”
J. Sound Vib.
,
257
(
3
), pp.
477
501
. 10.1006/jsvi.2002.5049
24.
Goody
,
M.
,
2004
, “
Empirical Spectral Model of Surface Pressure Fluctuations
,”
AIAA J.
,
42
(
9
), pp.
1788
1794
. 10.2514/1.9433
25.
Witting
,
J. M.
,
1986
, “
A Spectral Model of Pressure Fluctuations at a Rigid Wall Bounding an Incompressible Fluid, Based on Turbulent Structures in the Boundary Layer
,”
Noise Control Eng. J.
,
26
(
1
), pp.
28
43
. 10.3397/1.2827660
26.
Martin
,
N. C.
, and
Leehey
,
P.
,
1977
, “
Low Wavenumber Wall Pressure Measurements Using a Rectangular Membrane as a Spatial Filter
,”
J. Sound Vib.
,
52
(
1
), pp.
95
120
. 10.1016/0022-460X(77)90391-1
27.
Martini
,
K. F.
,
Leehey
,
P.
, and
Moeller
,
M.
,
1984
, “
Comparison of Techniques to Measure the Low Wavenumber Spectrum of a Turbulent Boundary Layer
,”
MIT Acoustics and Vibration Laboratory Report, 92828-1
,
Cambridge, MA
.
28.
Tkachenko
,
V. M.
,
Smol'yakov
,
A. V.
,
Kolyshnitsyn
,
V. A.
, and
Marshov
,
V. P.
,
2008
, “
Wave Number-Frequency Spectrum of Turbulent Pressure Fluctuations: Methods of Measurement and Results
,”
Acoust. Phys.
,
54
(
1
), pp.
109
114
. 10.1134/S1063771008010156
29.
Bonness
,
W. K.
,
Capone
,
D. E.
, and
Hambric
,
S. A.
,
2010
, “
Low-Wavenumber Turbulent Boundary Layer Wall-Pressure Measurements From Vibration Data on a Cylinder in Pipe Flow
,”
J. Sound Vib.
,
329
(
20
), pp.
4166
4180
. 10.1016/j.jsv.2010.04.010
30.
Gloerfelt
,
X.
, and
Berland
,
J.
,
2013
, “
Turbulent Boundary-Layer Noise: Direct Radiation at Mach Number 0.5
,”
J. Fluid Mech.
,
723
(
5
), pp.
318
351
. 10.1017/jfm.2013.134
31.
Zhang
,
M.
,
2015
, “
Reduced Order Models for Turbulent Wall-Pressure Fluctuations and for Acoustic Wave Propagation in Sensor Ports
,”
PhD Dissertation
,
University of Alabama in Huntsville
,
Huntsville, AL
.
32.
Zhang
,
M.
, and
Frendi
,
A.
,
2018
, “
A Turbulent Wall-Pressure Fluctuation Model for Fluid-Structure Interaction
,”
ICCFD10-0125
,
Barcelona, Spain
,
July 9–13
, pp.
1
18
.
You do not currently have access to this content.