Abstract

Coupled blade-hub dynamics of a coupled three-blade-rotor system with parametric stiffness, which is similar to a horizontal-axis wind turbine, is studied. Blade equations have parametric and direct excitation terms due to gravity and are coupled through the hub equation. For a single degree-of-freedom blade model with only in-plane transverse vibrations, the reduced-order model shows parametric resonances. A small parameter is established for large blades, which enables us to treat the effect of blade motion as a perturbation on the rotor motion. The rotor speed is not constant, and the cyclic variations cannot be expressed as explicit functions of time. Therefore, it is more convenient to use the rotor angle as the independent variable. By expressing the system dynamics in the rotor angle domain and assuming small variations in rotor speed, the blade equations are decoupled from the rotor equation. The interdependent blade equations constitute a three-degree-of-freedom system with periodic parametric and direct excitation. The response is analyzed by using a first-order method of multiple scales (MMS). The system has a superharmonic and a subharmonic resonances due to direct and parametric effects introduced by gravity. Amplitude-frequency relations and stabilities of these resonances are studied. The MMS solutions are compared with numerical simulations for verification.

References

References
1.
Griffith
,
D. T.
, and
Ashwill
,
T. D.
,
2011
, “
The Sandia 100-Meter All-Glass Baseline Wind Turbine Blade: SNL100-00
,”
Sandia National Laboratories
,
Albuquerque
,
Report No. SAND2011-3779
.
2.
Kallesøe
,
B. S.
,
2007
, “
Equations of Motion for a Rotor Blade, Including Gravity, Pitch Action and Rotor Speed Variations
,”
Wind Energy
,
10
(
3
), pp.
209
230
. 10.1002/we.217
3.
Li
,
L.
,
Li
,
Y.
,
Liu
,
Q.
, and
Lv
,
H.
,
2014
, “
A Mathematical Model for Horizontal Axis Wind Turbine Blades
,”
Appl. Math. Modell.
,
38
(
11–12
), pp.
2695
2715
. 10.1016/j.apm.2013.10.068
4.
Jonkman
,
J. M.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
,
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,
National Renewable Energy Laboratory, Golden
,
CO
.
5.
Bir
,
G. S.
, and
Oyague
,
F.
,
2007
,
Estimation of Blade and Tower Properties for the Gearbox Research Collaborative Wind Turbine
,
National Renewable Energy Laboratory
,
Golden, CO
.
6.
Allen
,
M. S.
,
Sracic
,
M. W.
,
Chauhan
,
S.
, and
Hansen
,
M. H.
,
2011
, “
Output-Only Modal Analysis of Linear Time-Periodic Systems With Application to Wind Turbine Simulation Data
,”
Mech. Syst. Sig. Process.
,
25
(
4
), pp.
1174
1191
. 10.1016/j.ymssp.2010.12.018
7.
Ramakrishnan
,
V.
, and
Feeny
,
B. F.
,
2011
, “
In-Plane Nonlinear Dynamics of Wind Turbine Blades
,”
ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Washington, DC
, pp.
761
769
.
8.
Ramakrishnan
,
V.
, and
Feeny
,
B. F.
,
2012
, “
Resonances of a Forced Mathieu Equation With Reference to Wind Turbine Blades
,”
ASME J. Vib. Acoust.
,
134
(
6
), p.
064501
. 10.1115/1.4006183
9.
Inoue
,
T.
,
Ishida
,
Y.
, and
Kiyohara
,
T.
,
2012
, “
Nonlinear Vibration Analysis of the Wind Turbine Blade (Occurrence of the Superharmonic Resonance in the Out of Plane Vibration of the Elastic Blade)
,”
ASME J. Vib. Acoust.
,
134
(
3
), p.
031009
. 10.1115/1.4005829
10.
Maalawi
,
K. Y.
, and
Negm
,
H. M.
,
2002
, “
Optimal Frequency Design of Wind Turbine Blades
,”
J. Wind Eng. Ind. Aerodyn.
,
90
(
8
), pp.
961
986
. 10.1016/S0167-6105(02)00214-3
11.
Lin
,
S.
,
Lee
,
S.
, and
Lin
,
Y.
,
2008
, “
Modeling and Bending Vibration of the Blade of a Horizontal-Axis Wind Power Turbine
,”
Comput. Model. Eng. Sci.
,
23
(
3
), p.
175
.
12.
Otero
,
A. D.
, and
Ponta
,
F. L.
,
2010
, “
Structural Analysis of Wind-Turbine Blades by a Generalized Timoshenko Beam Model
,”
ASME J. Sol. Energy Eng.
,
132
(
1
), p.
011015
. 10.1115/1.4000596
13.
Ju
,
D.
, and
Sun
,
Q.
,
2017
, “
Modeling of a Wind Turbine Rotor Blade System
,”
ASME J. Vib. Acoust.
,
139
(
5
), p.
051013
. 10.1115/1.4036633
14.
Ikeda
,
T.
,
Harata
,
Y.
, and
Ishida
,
Y.
,
2018
, “
Parametric Instability and Localization of Vibrations in Three-Blade Wind Turbines
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
7
), p.
071001
. 10.1115/1.4039899
15.
Sinha
,
S. K.
,
2004
, “
Dynamic Characteristics of a Flexible Bladed-Rotor With Coulomb Damping Due to Tip-Rub
,”
J. Sound Vib.
,
273
(
4–5
), pp.
875
919
. 10.1016/S0022-460X(03)00647-3
16.
Ji
,
Z.
, and
Zu
,
J. W.
,
1998
, “
Method of Multiple Scales for Vibration Analysis of Rotor Shaft Systems With Non-Linear Bearing Pedestal Model
,”
J. Sound Vib.
,
218
(
2
), pp.
293
305
. 10.1006/jsvi.1998.1835
17.
Chao
,
C. P.
,
Lee
,
C. T.
, and
Shaw
,
S. W.
,
1997
, “
Non-Unison Dynamics of Multiple Centrifugal Pendulum Vibration Absorbers
,”
J. Sound Vib.
,
204
(
5
), pp.
769
794
. 10.1006/jsvi.1997.0960
18.
Acar
,
G. D.
, and
Feeny
,
B. F.
,
2018
, “
Bend-Bend-Twist Vibrations of a Wind Turbine Blade
,”
Wind Energy
,
21
(
1
), pp.
15
28
. 10.1002/we.2141
19.
Acar
,
G. D.
,
2017
,
Dynamics of Horizontal Axis Wind Turbines and Systems With Parametric Stiffness
,
Michigan State University
,
East Lansing, MI
.
20.
Alsuwaiyan
,
A. S.
, and
Shaw
,
S. W.
,
2002
, “
Performance and Dynamic Stability of General-Path Centrifugal Pendulum Vibration Absorbers
,”
J. Sound Vib.
,
252
(
5
), pp.
791
815
. 10.1006/jsvi.2000.3534
21.
Wilson
,
W. K.
,
1968
,
Pratical Solution of Torsional Vibration Problems Chapter XXX
,
Chapman & Hall
,
London
.
22.
Chao
,
C. P.
,
Shaw
,
S. W.
, and
Lee
,
C. T.
,
1997
, “
Stability of the Unison Response for a Rotating System With Multiple Tautochronic Pendulum Vibration Absorbers
,”
ASME J. Appl. Mech.
,
64
(
1
), pp.
149
156
. 10.1115/1.2787266
23.
Theisen
,
T. M.
,
2011
, “
Gravity’s Effect on Centrifugal Pendulum Vibration Absorbers
,”
Thesis
,
Michigan State University
,
East Lansing, MI
.
24.
Meirovitch
,
L.
,
1980
,
Computational Methods in Structural Dynamics
, Vol. 5,
Springer Science & Business Media
,
Rockville, MD
.
25.
Ramakrishnan
,
V.
, and
Feeny
,
B. F.
,
2014
, “
Out-of-Plane Nonlinear Dynamic Analysis of Wind Turbine Blades
,”
ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
, p.
V008T11A056
.
26.
Larsen
,
J. W.
,
Nielsen
,
S. R. K.
, and
Krenk
,
S.
,
2007
, “
Dynamic Stall Model for Wind Turbine Airfoils
,”
J. Fluids Struct.
,
23
(
7
), pp.
959
982
. 10.1016/j.jfluidstructs.2007.02.005
27.
Theodorsen
,
T.
,
1949
, “
General Theory of Aerodynamic Instability and the Mechanism of Flutter
,”
National Advisory Committee for Aeronautics
,
Report 496
.
28.
Olson
,
B. J.
,
Shaw
,
S. W.
,
Shi
,
C.
,
Pierre
,
C.
, and
Parker
,
R. G.
,
2014
, “
Circulant Matrices and Their Application to Vibration Analysis
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040803
. 10.1115/1.4027722
29.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
2008
,
Nonlinear Oscillations
,
John Wiley & Sons
,
Hoboken, NJ
.
30.
Ramakrishnan
,
V.
, and
Feeny
,
B. F.
,
2012
, “
Second Order Perturbation Analysis of a Forced Nonlinear Mathieu Equation
,”
ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
, pp.
1073
1082
.
31.
Stoker
,
J. J.
,
1950
,
Nonlinear Vibrations in Mechanical and Electrical Systems
, Vol.
2
,
Interscience Publishers
,
New York
.
32.
Acar
,
G. D.
, and
Feeny
,
B. F.
,
2019
, “
Approximate Floquet Analysis of Parametrically Excited Multi-Degree-of-Freedom Systems With Application to Wind Turbines
,”
ASME J. Vib. Acoust.
,
141
(
1
), p.
011004
. 10.1115/1.4040522
You do not currently have access to this content.