Abstract

The bolted flange joint is an important source of nonlinearity in dynamical analysis of launch vehicles, which will lead to both longitudinal and transversal responses simultaneously subject to transversal dynamic loads, and may result in the failure of the connection structure. In this paper, a novel simplified dynamic modeling method via structural static analysis is proposed to simulate dynamical response of nonlinear bolted flange joints of launch vehicle, in which only static analysis of the detailed finite element model or static experiment is used for parameter identification of the model. Two types of nonlinear springs are designed for different tensile and compressive stiffness of the bolted flange joint, which affect longitudinal dynamic behaviour of the connection, and a shear spring is used to modify the transversal stiffness. The sections of launch vehicle are modeled as linear beams for efficiency. Effectiveness of the proposed modeling method is confirmed by a typical connection structure, bolted flange connected cylindrical shells, whose finite element models are verified with dynamic experiments. Superiority of the simplified dynamic model from the proposed method is demonstrated by comparing with the previous simplified model. The connection structures with different numbers of bolts are studied, and most of the dynamic responses calculated from the proposed model agree well with those from the finite element model. The coupling vibration of the connection structure is predicted successfully, in which longitudinal response of the structure is excited by the transversal load.

References

1.
Zipfel
,
P. H.
,
2007
,
Modeling and Simulation of Aerospace Vehicle Dynamics
,
American Institute of Aeronautics and Astronautics, Inc.
,
Reston, VA
.
2.
Acharya
,
A. R.
, and
Singa Rao
,
K.
,
2000
, “
Structural Dynamic Problems in Space Launch Vehicle Systems Development
,”
41st Structures, Structural Dynamics, and Materials Conference and Exhibit
,
Atlanta, GA
,
Apr. 3–6
, Vol.
5
, pp.
503
513
.
3.
Gilardi
,
G.
, and
Sharf
,
I.
,
2002
, “
Literature Survey of Contact Dynamics Modelling
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1213
1239
. 10.1016/S0094-114X(02)00045-9
4.
Ibrahim
,
R. A.
, and
Pettit
,
C. L.
,
2005
, “
Uncertainties and Dynamic Problems of Bolted Joints and Other Fasteners
,”
J. Sound Vib.
,
279
(
3
), pp.
857
936
. 10.1016/j.jsv.2003.11.064
5.
Dohner
,
J. L.
,
Gregory
,
D. L.
,
Segalman
,
D.
, and
Martinez
,
D. R.
,
2000
,
White paper
: “
On the Development of Methodologies for Constructing Predictive Models of Structures With Joints and Interfaces
”,
Structural Dynamics Department, Sandia National Laboratories
,
Albuquerque, NM
.
6.
Morino
,
Y.
,
Komatsu
,
K.
,
Sano
,
M.
,
Minegishi
,
M.
, and
Morita
,
T.
,
1987
, “
Vibration Test of 1/5 Scale H-II Launch Vehicle
,”
28th Structures, Structural Dynamics and Materials Conference
,
Monterey, CA
,
Apr. 6–8
, p.
783
.
7.
Lawler
,
W.
, and
Riley
,
G.
,
2000
, “
Saturn V Structural Dynamic Test/Modeling
,”
41st Structures, Structural Dynamics, and Materials Conference and Exhibit
,
Atlanta, GA
,
Apr. 3–6
, p.
1674
.
8.
Pan
,
Z.
,
Xing
,
Y.
,
Zhu
,
L.
,
Dong
,
K.
, and
Sun
,
M.
,
2010
, “
Liquid Propellant Analogy Technique in Dynamic Modeling of Launch Vehicle
,”
Sci. China Technol. Sci.
,
53
(
8
), pp.
2102
2110
. 10.1007/s11431-010-3168-4
9.
Cheng
,
G.
, and
Wang
,
W.
,
2014
, “
Fast Dynamic Analysis of Complicated Beam-Type Structure Based on Reduced Super Beam Model
,”
AIAA J.
,
52
(
5
), pp.
952
963
. 10.2514/1.J052312
10.
Wang
,
B.
,
Li
,
Y.
,
Hao
,
P.
,
Zhou
,
Y.
,
Zhao
,
Y.
, and
Wang
,
B.
,
2017
, “
Free Vibration Analysis of Beam-Type Structures Based on Novel Reduced-Order Model
,”
AIAA J.
,
55
(
9),
pp.
3143
3152
. 10.2514/1.J055763
11.
Kim
,
J.
,
Yoon
,
J. C.
, and
Kang
,
B. S.
,
2007
, “
Finite Element Analysis and Modeling of Structure with Bolted Joints
,”
Appl. Math. Model.
,
31
(
5
), pp.
895
911
. 10.1016/j.apm.2006.03.020
12.
Schwingshackl
,
C. W.
,
Di Maio
,
D.
,
Sever
,
I.
, and
Green
,
J. S.
,
2013
, “
Modeling and Validation of the Nonlinear Dynamic Behavior of Bolted Flange Joints
,”
ASME J. Eng. Gas Turbines Power
,
135
(
12
), p.
122504
. 10.1115/1.4025076
13.
Luan
,
Y.
,
Guan
,
Z. Q.
,
Cheng
,
G. D.
, and
Liu
,
S.
,
2012
, “
A Simplified Nonlinear Dynamic Model for the Analysis of Pipe Structures with Bolted Flange Joints
,”
J. Sound Vib.
,
331
(
2
), pp.
325
344
. 10.1016/j.jsv.2011.09.002
14.
Guzas
,
E.
,
Behan
,
K.
, and
Davis
,
J.
,
2015
, “
3D Finite Element Modeling of Single Bolt Connections Under Static and Dynamic Tension Loading
,”
Shock Vib.
,
2015
, pp.
1
12
. 10.1155/2015/205018
15.
Blachowski
,
B.
, and
Gutkowski
,
W.
,
2016
, “
Effect of Damaged Circular Flange-Bolted Connections on Behaviour of Tall Towers, Modelled by Multilevel Substructuring
,”
Eng. Struct.
,
111
, pp.
93
103
. 10.1016/j.engstruct.2015.12.018
16.
Guo
,
Y.
,
Wei
,
Y.
,
Yang
,
Z.
,
Huang
,
C.
,
Wu
,
X.
, and
Yin
,
Q.
,
2017
, “
Nonlinearity of Interfaces and Force Transmission of Bolted Flange Joints Under Impact Loading
,”
Int. J. Impact Eng.
,
109
, pp.
214
223
. 10.1016/j.ijimpeng.2017.06.012
17.
Castelluccio
,
G. M.
, and
Brake
,
M. R. W.
,
2017
, “
On the Origin of Computational Model Sensitivity, Error, and Uncertainty in Threaded Fasteners
,”
Comput. Struct.
,
186
, pp.
1
10
. 10.1016/j.compstruc.2017.03.004
18.
Tian
,
T.
,
Yuan
,
J.
,
Li
,
D.
,
Wang
,
Q.
, and
Chen
,
B.
,
2018
, “
Study on the Failure of the Bolted Flange Connection Structure Between Stages of Missiles (Rockets) Under Transversal Impact Load
,”
Shock Vib.
,
2018
, p.
3953259
. 10.1155/2018/3953259
19.
Song
,
Y.
,
Hartwigsen
,
C. J.
,
McFarland
,
D. M.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2004
, “
Simulation of Dynamics of Beam Structures with Bolted Joints Using Adjusted Iwan Beam Elements
,”
J. Sound Vib.
,
273
(
1
), pp.
249
276
. 10.1016/S0022-460X(03)00499-1
20.
Oldfield
,
M.
,
Ouyang
,
H.
, and
Mottershead
,
J. E.
,
2005
, “
Simplified Models of Bolted Joints Under Harmonic Loading
,”
Comput. Struct.
,
84
(
1–2
), pp.
25
33
. 10.1016/j.compstruc.2005.09.007
21.
Li
,
Y.
, and
Hao
,
Z.
,
2016
, “
A six-Parameter Iwan Model and Its Application
,”
Mech. Syst. Signal Process.
,
68
, pp.
354
365
. 10.1016/j.ymssp.2015.07.009
22.
Li
,
Y.
,
Hao
,
Z.
,
Feng
,
J.
, and
Zhang
,
D.
,
2017
, “
Investigation Into Discretization Methods of the Six-Parameter Iwan Model
,”
Mech. Syst. Signal Process.
,
85
, pp.
98
110
. 10.1016/j.ymssp.2016.07.032
23.
Iranzad
,
M.
, and
Ahmadian
,
H.
,
2012
, “
Identification of Nonlinear Bolted Lap Joint Models
,”
Comput. Struct.
,
96
, pp.
1
8
. 10.1016/j.compstruc.2012.01.011
24.
Scarselli
,
G.
,
Castorini
,
E.
,
Panella
,
F. W.
,
Nobile
,
R.
, and
Maffezzoli
,
A.
,
2015
, “
Structural Behaviour Modelling of Bolted Joints in Composite Laminates Subjected to Cyclic Loading
,”
Aerosp. Sci. Technol.
,
43
, pp.
89
95
. 10.1016/j.ast.2015.02.017
25.
Wang
,
Z. C.
,
Xin
,
Y.
, and
Ren
,
W. X.
,
2016
, “
Nonlinear Structural Joint Model Updating Based on Instantaneous Characteristics of Dynamic Responses
,”
Mech. Syst. Signal Process.
,
76
, pp.
476
496
. 10.1016/j.ymssp.2016.01.024
26.
Lu
,
X.
,
Zeng
,
Y.
,
Chen
,
Y.
,
Xie
,
X.
, and
Guan
,
Z.
,
2017
, “
Transient Response Characteristics of a Bolted Flange Connection Structure with Shear Pin/Cone
,”
J. Sound Vib.
,
395
, pp.
240
257
. 10.1016/j.jsv.2017.02.029
You do not currently have access to this content.