Abstract

A deployment-scale array of locally resonant membrane-type acoustic metamaterials (MAMs) is fabricated. The acoustic performance of the array is measured in a transmission loss chamber, and a complex interaction between the individual cell and the array length scales is shown to exist. Transmission behavior of both the membrane and the array are independently studied using analytical models, and a method for estimating transmission loss through the structure that combines vibroacoustic predictions from both length scales is presented and shown to agree with measurements. Degradation of transmission loss performance often associated with scaling individual MAM cells into arrays is explained using analytical tools and verified using laser vibrometry. A novel design for hierarchical locally resonant acoustic metamaterials is introduced, and experimental and analytical data confirm this approach offers an effective strategy for minimizing or eliminating the efficiency losses associated with scaling MAM structures.

References

1.
Wang
,
T.
,
Sokolinsky
,
V. S.
,
Rajaram
,
S.
, and
Nutt
,
S. R.
,
2005
, “
Assessment of Sandwich Models for the Prediction of Sound Transmission Loss in Unidirectional Sandwich Panels
,”
Appl. Acoust.
,
66
(
3
), pp.
245
262
. 10.1016/j.apacoust.2004.08.005
2.
Yang
,
Z.
,
Mei
,
J.
,
Yang
,
M.
,
Chan
,
N. H.
, and
Sheng
,
P.
,
2008
, “
Membrane-Type Acoustic Metamaterial With Negative Dynamic Mass
,”
Phys. Rev. Lett.
,
101
(
20
), p.
204301
. 10.1103/PhysRevLett.101.204301
3.
Zhang
,
Y.
,
Wen
,
J.
,
Xiao
,
Y.
,
Wen
,
X.
, and
Wang
,
J.
,
2012
, “
Theoretical Investigation of the Sound Attenuation of Membrane-Type Acoustic Metamaterials
,”
Phys. Lett. A
,
376
(
17
), pp.
1489
1494
. 10.1016/j.physleta.2012.03.010
4.
Naify
,
C. J.
,
Chang
,
C. M.
,
McKnight
,
G.
, and
Nutt
,
S.
,
2010
, “
Transmission Loss and Dynamic Response of Membrane-Type Locally Resonant Acoustic Metamaterials
,”
J. Appl. Phys.
,
108
(
11
), p.
114905
. 10.1063/1.3514082
5.
Naify
,
C. J.
,
Chang
,
C.
,
McKnight
,
G.
, and
Nutt
,
S.
,
2011
, “
Transmission Loss of Membrane-Type Acoustic Metamaterials With Coaxial Ring Masses
,”
J. Appl. Phys.
,
110
(
12
), p.
124903
. 10.1063/1.3665213
6.
Lu
,
Z.
,
Cui
,
Y.
, and
Debiasi
,
M.
,
2016
, “
Active Membrane-Based Silencer and Its Acoustic Characteristics
,”
Appl. Acoust.
,
111
, pp.
39
48
. 10.1016/j.apacoust.2016.03.042
7.
Ma
,
G.
,
Fan
,
X.
,
Sheng
,
P.
, and
Fink
,
M.
,
2018
, “
Shaping Reverberating Sound Fields With an Actively Tunable Metasurface
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
26
), pp.
6638
6643
. 10.1073/pnas.1801175115
8.
Chen
,
S.
,
Fan
,
Y.
,
Fu
,
Q.
,
Wu
,
H.
,
Jin
,
Y.
,
Zheng
,
J.
, and
Zhang
,
F.
,
2018
, “
A Review of Tunable Acoustic Metamaterials
,”
Appl. Sci.
,
8
(
9
), p.
1480
. 10.3390/app8091480
9.
Huang
,
L.
,
1999
, “
A Theoretical Study of Duct Noise Control by Flexible Panels
,”
J. Acoust. Soc. Am.
,
106
(
4
), pp.
1801
1809
. 10.1121/1.427930
10.
Du
,
J.
,
Liu
,
Y.
, and
Zhang
,
Y.
,
2016
, “
Influence of Boundary Restraint on Sound Attenuation Performance of a Duct-Membrane Silencer
,”
Appl. Acoust.
,
105
, pp.
156
163
. 10.1016/j.apacoust.2015.11.020
11.
Liu
,
Y.
, and
Du
,
J.
,
2017
, “
Coupling Effects of Boundary Restraining Stiffness and Tension Force on Sound Attenuation of a Cavity-Backed Membrane Duct Silencer
,”
Appl. Acoust.
,
117
, pp.
150
159
. 10.1016/j.apacoust.2016.10.023
12.
Chen
,
Y.
,
Huang
,
G.
,
Zhou
,
X.
,
Hu
,
G.
, and
Sun
,
C.
,
2014
, “
Analytical Coupled Vibroacoustic Modeling of Membrane-Type Acoustic Metamaterials: Membrane Model
,”
J. Acoust. Soc. Am.
,
136
(
3
), pp.
969
979
. 10.1121/1.4892870
13.
Langfeldt
,
F.
,
Gleine
,
W.
, and
von Estorff
,
O.
,
2015
, “
Analytical Model for Low-Frequency Transmission Loss Calculation of Membranes Loaded With Arbitrarily Shaped Masses
,”
J. Sound Vib.
,
349
, pp.
315
329
. 10.1016/j.jsv.2015.03.037
14.
Chen
,
Y.
,
Huang
,
G.
,
Zhou
,
X.
,
Hu
,
G.
, and
Sun
,
C.-T.
,
2014
, “
Analytical Coupled Vibroacoustic Modeling of Membrane-Type Acoustic Metamaterials: Plate Model
,”
J. Acoust. Soc. Am.
,
136
(
6
), pp.
2926
2934
. 10.1121/1.4901706
15.
Edwards
,
W. T.
,
Chang
,
C.-M.
,
McKnight
,
G.
, and
Nutt
,
S. R.
,
2019
, “
Analytical Model for Low-Frequency Transmission Loss Calculation of Zero-Prestressed Plates With Arbitrary Mass Loading
,”
ASME J. Vib. Acoust.
,
141
(
4
), p.
041001
. 10.1115/1.4042927
16.
Naify
,
C. J.
,
Chang
,
C. M.
,
McKnight
,
G.
,
Scheulen
,
F.
, and
Nutt
,
S.
,
2011
, “
Membrane-Type Metamaterials: Transmission Loss of Multi-Celled Arrays
,”
J. Appl. Phys.
,
109
(
10
) p.
104902
. 10.1063/1.3583656
17.
Naify
,
C. J.
,
Chang
,
C.-M.
,
McKnight
,
G.
, and
Nutt
,
S. R.
,
2012
, “
Scaling of Membrane-Type Locally Resonant Acoustic Metamaterial Arrays
,”
J. Acoust. Soc. Am.
,
132
(
4
), pp.
2784
2792
. 10.1121/1.4744941
18.
Langfeldt
,
F.
,
Gleine
,
W.
, and
von Estorff
,
O.
,
2018
, “
An Efficient Analytical Model for Baffled, Multi-Celled Membrane-Type Acoustic Metamaterial Panels
,”
J. Sound Vib.
,
417
, pp.
359
375
. 10.1016/j.jsv.2017.12.018
19.
Langfeldt
,
F.
, and
Gleine
,
W.
,
2019
, “
Membrane- and Plate-Type Acoustic Metamaterials With Elastic Unit Cell Edges
,”
J. Sound Vib.
,
453
, pp.
65
86
. 10.1016/j.jsv.2019.04.018
20.
Imbeni
,
V.
,
Kruzic
,
J. J.
,
Marshall
,
G. W.
,
Marshall
,
S. J.
, and
Ritchie
,
R. O.
,
2005
, “
The Dentin–Enamel Junction and the Fracture of Human Teeth
,”
Nat. Mater.
,
4
(
3
), pp.
229
232
. 10.1038/nmat1323
21.
Cranford
,
S. W.
,
Tarakanova
,
A.
,
Pugno
,
N. M.
, and
Buehler
,
M. J.
,
2012
, “
Nonlinear Material Behaviour of Spider Silk Yields Robust Webs
,”
Nature
,
482
(
7383
), pp.
72
76
. 10.1038/nature10739
22.
Zhang
,
P.
, and
To
,
A. C.
,
2013
, “
Broadband Wave Filtering of Bioinspired Hierarchical Phononic Crystal
,”
Appl. Phys. Lett.
,
102
(
12
), p.
121910
. 10.1063/1.4799171
23.
Miniaci
,
M.
,
Krushynska
,
A.
,
Gliozzi
,
A. S.
,
Kherraz
,
N.
,
Bosia
,
F.
, and
Pugno
,
N. M.
,
2018
, “
Design and Fabrication of Bioinspired Hierarchical Dissipative Elastic Metamaterials
,”
Phys. Rev. Appl.
,
10
(
2
), p.
024012
. 10.1103/PhysRevApplied.10.024012
24.
Lee
,
K. Y.
, and
Jeon
,
W.
,
2018
, “
Hierarchically Structured Metamaterials With Simultaneously Negative Mass Density and Young’s Modulus by Using Dynamic Homogenization
,”
J. Appl. Phys.
,
124
(
17
), p.
175103
. 10.1063/1.5050207
25.
Xu
,
X.
,
Barnhart
,
M. V.
,
Li
,
X.
,
Chen
,
Y.
, and
Huang
,
G.
,
2019
, “
Tailoring Vibration Suppression Bands With Hierarchical Metamaterials Containing Local Resonators
,”
J. Sound Vib.
,
442
, pp.
237
248
. 10.1016/j.jsv.2018.10.065
26.
ASTM
,
2016
, “
ASTM E2249-02(2016) Standard Test Method for Laboratory Measurement of Airborne Transmission Loss of Building Partitions and Elements Using Sound Intensity
,” pp.
1
15
.
27.
Rajaram
,
S.
,
Wang
,
T.
, and
Nutt
,
S.
,
2009
, “
Small-Scale Transmission Loss Facility for Flat Lightweight Panels
,”
Noise Control Eng. J.
,
57
(
5
), pp.
536
542
. 10.3397/1.3198209
You do not currently have access to this content.