Abstract

Convergence to low-energy responses arising from coexistence of multiple stable nodes is the main drawback of a nonlinear energy harvester preventing it from efficient wideband operation. A switching circuit with a boost-like topology has been proposed in this paper to overcome this substantial challenge. The circuit uses the energy harvested by the device to trigger it to jump from the low- to high-energy response. The performance of the proposed harvesting system when subjected to single harmonic excitations covering a wide range of frequencies is verified through both analytical and numerical investigations. Results indicate that by proper selection of timing parameters of the circuit including ON-time period of the switches together with the phase differences between the switching signals and the mechanical excitation, the applied electrical perturbation will be able to trigger the nonlinear resonating beam to jump from a low-energy response to the basin of attraction of the high-energy one within the whole frequency band in which a multivalued solution exists. Also, a probabilistic study is performed on a system with random phases of switching signals which shows that a successful switching from low- to high-energy response is achievable with a probability more than 80% by just controlling the ON-time period of the switch within the proper ranges with respect to the excitation frequency.

References

1.
Miao
,
P.
,
Mitcheson
,
P.
,
Holmes
,
A.
,
Yeatman
,
E.
,
Green
,
T.
, and
Stark
,
B.
,
2006
, “
MEMS Inertial Power Generators for Biomedical Applications
,”
Microsyst. Technol.
,
12
(
10–11
), pp.
1079
1083
. 10.1007/s00542-006-0152-9
2.
He
,
C.
,
Arora
,
A.
,
Kiziroglou
,
M. E.
,
Yates
,
D. C.
,
O’Hare
,
D.
, and
Yeatman
,
E. M.
,
2009
, “
MEMS Energy Harvesting Powered Wireless Biometric Sensor
,”
IEEE
Sixth International Workshop on Wearable and Implantable Body Sensor Networks, BSN 2009
,
Berkeley, CA
,
June 3–5
, pp.
207
212
.
3.
Elfrink
,
R.
,
Renaud
,
M.
,
Kamel
,
T.
,
De Nooijer
,
C.
,
Jambunathan
,
M.
,
Goedbloed
,
M.
,
Hohlfeld
,
D.
,
Matova
,
S.
,
Pop
,
V.
, and
Caballero
,
L.
,
2010
, “
Vacuum-Packaged Piezoelectric Vibration Energy Harvesters: Damping Contributions and Autonomy for a Wireless Sensor System
,”
J. Micromech. Microeng.
,
20
(
10
), p.
104001
. 10.1088/0960-1317/20/10/104001
4.
Yu
,
H.
,
Zhou
,
J.
,
Deng
,
L.
, and
Wen
,
Z.
,
2014
, “
A Vibration-Based MEMS Piezoelectric Energy Harvester and Power Conditioning Circuit
,”
Sensors
,
14
(
2
), pp.
3323
3341
. 10.3390/s140203323
5.
Kaya
,
T.
, and
Koser
,
H.
,
2007
, “
A New Batteryless Active RFID System: Smart RFID
,”
Proceedings of the 1st Annual RFID Eurasia
,
Istanbul, Turkey
,
Sept. 5–6
,
IEEE
, pp.
1
4
.
6.
Hande
,
A.
,
Bridgelall
,
R.
, and
Bhatia
,
D.
,
2009
, “Energy Harvesting for Active RF Sensors and ID Tags,”
Energy Harvesting Technologies
,
S.
Priya
, and
D. J.
Inman
, eds.,
Springer
,
New York
, pp.
459
492
.
7.
Sheu
,
G.-J.
,
Yang
,
S.-M.
, and
Lee
,
T.
,
2011
, “
Development of a Low Frequency Electrostatic Comb-Drive Energy Harvester Compatible to SoC Design by CMOS Process
,”
Sens. Actuators A
,
167
(
1
), pp.
70
76
. 10.1016/j.sna.2010.07.013
8.
Wang
,
P.
,
Tanaka
,
K.
,
Sugiyama
,
S.
,
Dai
,
X.
,
Zhao
,
X.
, and
Liu
,
J.
,
2009
, “
A Micro Electromagnetic Low Level Vibration Energy Harvester Based on MEMS Technology
,”
Microsyst. Technol.
,
15
(
6
), pp.
941
951
. 10.1007/s00542-009-0827-0
9.
Chung
,
G.-S.
, and
Lee
,
B.-C.
,
2015
, “
Fabrication and Characterization of Vibration-Driven AlN Piezoelectric Micropower Generator Compatible With Complementary Metal-Oxide Semiconductor Process
,”
J. Intell. Mater. Syst. Struct.
,
26
(
15
), pp.
1971
1979
. 10.1177/1045389x14546649
10.
Roundy
,
S.
, and
Wright
,
P. K.
,
2004
, “
A Piezoelectric Vibration Based Generator for Wireless Electronics
,”
Smart Mater. Struct.
,
13
(
5
), p.
1131
. 10.1088/0964-1726/13/5/018
11.
Chen
,
S.-N.
,
Wang
,
G.-J.
, and
Chien
,
M.-C.
,
2006
, “
Analytical Modeling of Piezoelectric Vibration-Induced Micro Power Generator
,”
Mechatronics
,
16
(
7
), pp.
379
387
. 10.1016/j.mechatronics.2006.03.003
12.
Beeby
,
S. P.
,
Torah
,
R.
,
Tudor
,
M.
,
Glynne-Jones
,
P.
,
O’donnell
,
T.
,
Saha
,
C.
, and
Roy
,
S.
,
2007
, “
A Micro Electromagnetic Generator for Vibration Energy Harvesting
,”
J. Micromech. Microeng.
,
17
(
7
), p.
1257
. 10.1088/0960-1317/17/7/007
13.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041002
. 10.1115/1.2890402
14.
Andosca
,
R.
,
McDonald
,
T. G.
,
Genova
,
V.
,
Rosenberg
,
S.
,
Keating
,
J.
,
Benedixen
,
C.
, and
Wu
,
J.
,
2012
, “
Experimental and Theoretical Studies on MEMS Piezoelectric Vibrational Energy Harvesters With Mass Loading
,”
Sens. Actuators A
,
178
, pp.
76
87
. 10.1016/j.sna.2012.02.028
15.
Green
,
P. L.
,
Papatheou
,
E.
, and
Sims
,
N. D.
,
2013
, “
Energy Harvesting From Human Motion and Bridge Vibrations: An Evaluation of Current Nonlinear Energy Harvesting Solutions
,”
J. Intell. Mater. Syst. Struct.
,
24
(
12
), pp.
1494
1505
. 10.1177/1045389X12473379
16.
Yang
,
B.
,
Liu
,
H.
,
Liu
,
J.
, and
Lee
,
C.
,
2014
,
Micro and Nano Energy Harvesting Technologies
,
Artech House
,
Boston, MA
.
17.
Quinn
,
D. D.
,
Triplett
,
A. L.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2011
, “
Comparing Linear and Essentially Nonlinear Vibration-Based Energy Harvesting
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011001
. 10.1115/1.4002782
18.
Ferrari
,
M.
,
Ferrari
,
V.
,
Guizzetti
,
M.
,
Andò
,
B.
,
Baglio
,
S.
, and
Trigona
,
C.
,
2010
, “
Improved Energy Harvesting From Wideband Vibrations by Nonlinear Piezoelectric Converters
,”
Sens. Actuators A
,
162
(
2
), pp.
425
431
. 10.1016/j.sna.2010.05.022
19.
Zhou
,
S.
,
Cao
,
J.
,
Inman
,
D. J.
,
Lin
,
J.
,
Liu
,
S.
, and
Wang
,
Z.
,
2014
, “
Broadband Tristable Energy Harvester: Modeling and Experiment Verification
,”
Appl. Energy
,
133
, pp.
33
39
. 10.1016/j.apenergy.2014.07.077
20.
Daqaq
,
M. F.
,
2010
, “
Response of Uni-Modal Duffing-Type Harvesters to Random Forced Excitations
,”
J. Sound Vib.
,
329
(
18
), pp.
3621
3631
. 10.1016/j.jsv.2010.04.002
21.
Cottone
,
F.
,
Vocca
,
H.
, and
Gammaitoni
,
L.
,
2009
, “
Nonlinear Energy Harvesting
,”
Phys. Rev. Lett.
,
102
(
8
), p.
080601
. 10.1103/PhysRevLett.102.080601
22.
Erturk
,
A.
, and
Inman
,
D.
,
2011
, “
Broadband Piezoelectric Power Generation on High-Energy Orbits of the Bistable Duffing Oscillator With Electromechanical Coupling
,”
J. Sound Vib.
,
330
(
10
), pp.
2339
2353
. 10.1016/j.jsv.2010.11.018
23.
Pasharavesh
,
A.
, and
Ahmadian
,
M.
,
2017
, “
Characterization of a Nonlinear MEMS-Based Piezoelectric Resonator for Wideband Micro Power Generation
,”
Appl. Math. Model.
,
41
, pp.
121
142
. 10.1016/j.apm.2016.08.019
24.
Pasharavesh
,
A.
,
Ahmadian
,
M. T.
, and
Zohoor
,
H.
,
2017
, “
On the Energy Extraction From Large Amplitude Vibrations of MEMS-Based Piezoelectric Harvesters
,”
Acta Mech.
,
228
(
10
), pp.
3445
3468
. 10.1007/s00707-017-1864-x
25.
Pasharavesh
,
A.
, and
Ahmadian
,
M. T.
,
2018
, “
Analytical and Numerical Simulations of Energy Harvesting Using MEMS Devices Operating in Nonlinear Regime
,”
Eur. Phys. J. B
,
91
(
10
), p.
241
. 10.1140/epjb/e2018-80609-8
26.
Barton
,
D. A.
,
Burrow
,
S. G.
, and
Clare
,
L. R.
,
2010
, “
Energy Harvesting From Vibrations With a Nonlinear Oscillator
,”
ASME J. Vib. Acoust.
,
132
(
2
), p.
021009
. 10.1115/1.4000809
27.
Cammarano
,
A.
,
Neild
,
S.
,
Burrow
,
S.
, and
Inman
,
D.
,
2014
, “
The Bandwidth of Optimized Nonlinear Vibration-Based Energy Harvesters
,”
Smart Mater. Struct.
,
23
(
5
), p.
055019
. 10.1088/0964-1726/23/5/055019
28.
Pisarchik
,
A. N.
, and
Feudel
,
U.
,
2014
, “
Control of Multistability
,”
Phys. Rep.
,
540
(
4
), pp.
167
218
. 10.1016/j.physrep.2014.02.007
29.
Mann
,
B.
, and
Sims
,
N.
,
2009
, “
Energy Harvesting From the Nonlinear Oscillations of Magnetic Levitation
,”
J. Sound Vib.
,
319
(
1
), pp.
515
530
. 10.1016/j.jsv.2008.06.011
30.
Cammarano
,
A.
,
Gonzalez-Buelga
,
A.
,
Neild
,
S.
,
Burrow
,
S.
, and
Inman
,
D.
,
2013
, “
Bandwidth of a Nonlinear Harvester With Optimized Electrical Load
,”
The 13th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS) 2013
,
London, UK
,
Dec. 3–6
,
IOP Publishing
, p.
012071
.
31.
Zhou
,
S.
,
Cao
,
J.
,
Inman
,
D. J.
,
Liu
,
S.
,
Wang
,
W.
, and
Lin
,
J.
,
2015
, “
Impact-Induced High-Energy Orbits of Nonlinear Energy Harvesters
,”
Appl. Phys. Lett.
,
106
(
9
), p.
093901
. 10.1063/1.4913606
32.
Masuda
,
A.
,
Senda
,
A.
,
Sanada
,
T.
, and
Sone
,
A.
,
2013
, “
Global Stabilization of High-Energy Response for a Duffing-Type Wideband Nonlinear Energy Harvester Via Self-Excitation and Entrainment
,”
J. Intell. Mater. Syst. Struct.
,
24
(
13
), pp.
1598
1612
. 10.1177/1045389X13479183
33.
Masuda
,
A.
, and
Sato
,
T.
,
2016
, “
Global Stabilization of High-Energy Resonance for a Nonlinear Wideband Electromagnetic Vibration Energy Harvester
,”
Proceedings of the Active and Passive Smart Structures and Integrated Systems
,
Las Vegas, NV
,
Mar. 21–24
,
International Society for Optics and Photonics
, p.
97990K
.
34.
Mallick
,
D.
,
Amann
,
A.
, and
Roy
,
S.
,
2016
, “
Surfing the High Energy Output Branch of Nonlinear Energy Harvesters
,”
Phys. Rev. Lett.
,
117
(
19
), p.
197701
. 10.1103/PhysRevLett.117.197701
35.
Hu
,
H.
,
Dai
,
L.
,
Chen
,
H.
,
Jiang
,
S.
,
Wang
,
H.
, and
Laude
,
V.
,
2017
, “
Two Methods to Broaden the Bandwidth of a Nonlinear Piezoelectric Bimorph Power Harvester
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
031008
. 10.1115/1.4035717
36.
Pasharavesh
,
A.
,
Ahmadian
,
M.
, and
Zohoor
,
H.
,
2017
, “
Electromechanical Modeling and Analytical Investigation of Nonlinearities in Energy Harvesting Piezoelectric Beams
,”
Int. J. Mech. Mater. Des.
,
13
(
4
), pp.
499
514
. 10.1007/s10999-016-9353-2
37.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
2008
,
Nonlinear Oscillations
,
John Wiley & Sons
,
New York
.
38.
Pasharavesh
,
A.
,
Ahmadian
,
M.
, and
Zohoor
,
H.
,
2017
, “
Coupled Electromechanical Analysis of MEMS-Based Energy Harvesters Integrated With Nonlinear Power Extraction Circuits
,”
Microsyst. Technol.
,
23
(
7
), pp.
2403
2420
. 10.1007/s00542-016-3024-y
39.
Rao
,
S. S.
,
2007
,
Vibration of Continuous Systems
,
John Wiley & Sons
,
New York
.
40.
Liang
,
Z.
,
Xu
,
C.
,
Ren
,
B.
, and
Luo
,
H.
,
2015
, “
Theoretical Analysis of Energy Harvesting Performance for Clamped–Clamped Piezoelectric Beam
,”
Microsyst. Technol.
,
21
(
4
), pp.
815
823
. 10.1007/s00542-014-2237-1
41.
Pasharavesh
,
A.
,
Ahmadian
,
M.
, and
Zohoor
,
H.
,
2019
, “
Complex Modal Analysis and Coupled Electromechanical Simulation of Energy Harvesting Piezoelectric Laminated Beams
,”
Proc. Inst. Mech. Eng. Part C
,
233
(
7
), pp.
2526
2537
. 10.1177/0954406218784623
You do not currently have access to this content.