Abstract

The inerter is referred to as a two-terminal device that provides inertial forces proportional to the relative accelerations between its two terminals. It has been widely applied in vibration control due to its mass amplification effect. In this paper, a new inerter-based damper is proposed to take advantage of the mass amplification effect, which consists of the classic rack-pinion inerter in conjunction with a torsional tuned mass damper. Unlike any other topologies of inerter-based dampers, the torsional mass damper is connected to the pinion of the inerter via a rotational spring and viscous damper. As a result, the weight of the torsional mass damper can be significantly reduced. The proposed damper is applied to single-degree-of-freedom primary structures and a two degrees-of-freedom structure, and the H2 optimization is conducted to obtain the optimum tuning ratio and damping ratio analytically. When comparing the proposed damper with its counterpart reported in the literature, the proposed damper achieves 20–70% improvement when their weights are identical.

References

1.
Constantinou
,
M. C.
,
Soong
,
T. T.
, and
Dargush
,
G. F.
,
1998
,
MCEER Monograph Series
, Vol.
1
,
Multidisciplinary Center for Earthquake Engineering Research
,
Buffalo, NY
.
2.
Kelly
,
J. M.
,
1999
, “
The Role of Damping in Seismic Isolation
,”
Earthquake Eng. Struct. Dyn.
,
28
(
1
), pp.
3
20
. 10.1002/(SICI)1096-9845(199901)28:1<3::AID-EQE801>3.0.CO;2-D
3.
Symans
,
M. D.
,
Charney
,
F. A.
,
Whittaker
,
A. S.
,
Constantinou
,
M. C.
,
Kircher
,
C. A.
,
Johnson
,
M. W.
, and
McNamara
,
R. J.
,
2008
, “
Energy Dissipation Systems for Seismic Applications: Current Practice and Recent Developments
,”
J. Struct. Eng.
,
134
(
1
), pp.
3
21
. 10.1061/(ASCE)0733-9445(2008)134:1(3)
4.
Smith
,
M. C.
,
2002
, “
Synthesis of Mechanical Networks: The Inerter
,”
IEEE Trans. Autom. Control
,
47
(
10
), pp.
1648
1662
. 10.1109/TAC.2002.803532
5.
Wang
,
F.-C.
,
Liao
,
M.-K.
,
Liao
,
B.-H.
,
Su
,
W.-J.
, and
Chan
,
H.-A.
,
2009
, “
The Performance Improvements of Train Suspension Systems With Mechanical Networks Employing Inerters
,”
Veh. Syst. Dyn.
,
47
(
7
), pp.
805
830
. 10.1080/00423110802385951
6.
Ikago
,
K.
,
Saito
,
K.
, and
Inoue
,
N.
,
2012
, “
Seismic Control of Single-Degree-of-Freedom Structure Using Tuned Viscous Mass Damper
,”
Earthquake Eng. Struct. Dyn.
,
41
(
3
), pp.
453
474
. 10.1002/eqe.1138
7.
Flannelly
,
W. G.
,
1967
, “
Dynamic Antiresonant Vibration Isolator
,” U.S. Patent 3,322,379,
May
30
.
8.
Yilmaz
,
C.
, and
Kikuchi
,
N.
,
2006
, “
Analysis and Design of Passive Low-Pass Filter-Type Vibration Isolators Considering Stiffness and Mass Limitations
,”
J. Sound Vib.
,
293
(
1–2
), pp.
171
195
. 10.1016/j.jsv.2005.09.016
9.
Papageorgiou
,
C.
, and
Smith
,
M. C.
,
2005
, “
Laboratory Experimental Testing of Inerters
,”
Proceedings of the 44th IEEE Conference on Decision and Control, IEEE
,
Seville, Spain
,
Dec. 12–15
,
IEEE
,
New York
, pp.
3351
3356
.
10.
Smith
,
M. C.
, and
Wang
,
F.-C.
,
2004
, “
Performance Benefits in Passive Vehicle Suspensions Employing Inerters
,”
Veh. Syst. Dyn.
,
42
(
4
), pp.
235
257
. 10.1080/00423110412331289871
11.
Papageorgiou
,
C.
, and
Smith
,
M. C.
,
2006
, “
Positive Real Synthesis Using Matrix Inequalities for Mechanical Networks: Application to Vehicle Suspension
,”
IEEE Trans. Control Syst. Technol.
,
14
(
3
), pp.
423
435
. 10.1109/TCST.2005.863663
12.
Wang
,
F.-C.
, and
Su
,
W.-J.
,
2008
, “
Impact of Inerter Nonlinearities on Vehicle Suspension Control
,”
Veh. Syst. Dyn.
,
46
(
7
), pp.
575
595
. 10.1080/00423110701519031
13.
Scheibe
,
F.
, and
Smith
,
M. C.
,
2009
, “
Analytical Solutions for Optimal Ride Comfort and Tyre Grip for Passive Vehicle Suspensions
,”
Veh. Syst. Dyn.
,
47
(
10
), pp.
1229
1252
. 10.1080/00423110802588323
14.
Wang
,
F.-C.
, and
Chan
,
H.-A.
,
2011
, “
Vehicle Suspensions With a Mechatronic Network Strut
,”
Veh. Syst. Dyn.
,
49
(
5
), pp.
811
830
. 10.1080/00423111003797143
15.
Hu
,
Y.
,
Chen
,
M. Z. Q.
, and
Shu
,
Z.
,
2014
, “
Passive Vehicle Suspensions Employing Inerters With Multiple Performance Requirements
,”
J. Sound Vib.
,
333
(
8
), pp.
2212
2225
. 10.1016/j.jsv.2013.12.016
16.
Ikago
,
K.
,
Sugimura
,
Y.
,
Saito
,
K.
, and
Inoue
,
N.
,
2012
, “
Modal Response Characteristics of a Multiple-Degree-of-Freedom Structure Incorporated With Tuned Viscous Mass Dampers
,”
J. Asian Arch. Build. Eng.
,
11
(
2
), pp.
375
382
. 10.3130/jaabe.11.375
17.
Garrido
,
H.
,
Curadelli
,
O.
, and
Ambrosini
,
D.
,
2013
, “
Improvement of Tuned Mass Damper by Using Rotational Inertia Through Tuned Viscous Mass Damper
,”
Eng. Struct.
,
56
, pp.
2149
2153
. 10.1016/j.engstruct.2013.08.044
18.
Nakamura
,
Y.
,
Fukukita
,
A.
,
Tamura
,
K.
,
Yamazaki
,
I.
,
Matsuoka
,
T.
,
Hiramoto
,
K.
, and
Sunakoda
,
K.
,
2014
, “
Seismic Response Control Using Electromagnetic Inertial Mass Dampers
,”
Earthquake Eng. Struct. Dyn.
,
43
(
4
), pp.
507
527
. 10.1002/eqe.2355
19.
Lazar
,
I. F.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2014
, “
Using an Inerter-Based Device for Structural Vibration Suppression
,”
Earthquake Eng. Struct. Dyn.
,
43
(
8
), pp.
1129
1147
. 10.1002/eqe.2390
20.
Marian
,
L.
, and
Giaralis
,
A.
,
2014
, “
Optimal Design of a Novel Tuned Mass-Damper-Inerter (TMDI) Passive Vibration Control Configuration for Stochastically Support-Excited Structural Systems
,”
Probab. Eng. Mech.
,
38
, pp.
156
164
. 10.1016/j.probengmech.2014.03.007
21.
Javidialesaadi
,
A.
, and
Wierschem
,
N. E.
,
2018
, “
Optimal Design of Rotational Inertial Double Tuned Mass Dampers Under Random Excitation
,”
Eng. Struct.
,
165
, pp.
412
421
. 10.1016/j.engstruct.2018.03.033
22.
Joubaneh
,
E. F.
,
Barry
,
O. R.
, and
Zuo
,
L.
,
2018
, “
On the Vibration Suppression and Energy Harvesting of Building Structures Using an Electromagnetic-Inerter-Absorber
,”
ASME 2018 Dynamic Systems and Control Conference
,
Atlanta, GA
,
Sept. 30–Oct. 3
,
American Society of Mechanical Engineers
,
New York
, p.
V002T18A005
.
23.
De Domenico
,
D.
, and
Ricciardi
,
G.
,
2018
, “
An Enhanced Base Isolation System Equipped With Optimal Tuned Mass Damper Inerter (TMDI)
,”
Earthquake Eng. Struct. Dyn.
,
47
(
5
), pp.
1169
1192
. 10.1002/eqe.3011
24.
Pan
,
C.
,
Zhang
,
R.
,
Luo
,
H.
,
Li
,
C.
, and
Shen
,
H.
,
2018
, “
Demand-Based Optimal Design of Oscillator With Parallel-Layout Viscous Inerter Damper
,”
Struct. Control Health Monit.
,
25
(
1
), p.
e2051
. 10.1002/stc.2051
25.
Sun
,
H.
,
Zuo
,
L.
,
Wang
,
X.
,
Peng
,
J.
, and
Wang
,
W.
,
2019
, “
Exact H2 Optimal Solutions to Inerter-Based Isolation Systems for Building Structures
,”
Struct. Control Health Monit.
,
26
(
6
), p.
e2357
. 10.1002/stc.2357
26.
Joubaneh
,
E. F.
, and
Barry
,
O. R.
,
2019
, “
On the Improvement of Vibration Mitigation and Energy Harvesting Using Electromagnetic Vibration Absorber-Inerter: Exact H2 Optimization
,”
ASME J. Vib. Acoust.
,
141
(
6
), p.
061007
. 10.1115/1.4044303
27.
Albers
,
A.
,
1994
, “
Advanced Development of Dual Mass Flywheel (DMFW) Design-Noise Control for Today’s Automobiles
,”
Proceedings of the 5th LuK Symposium
,
Buhl, Germany
,
May 27
, pp.
5
41
.
28.
Bopp
,
W. G.
,
1988
, “
Two Mass Flywheel Assembly With Torsional Damping Means
,” U.S. Patent 4,782,936,
Nov
.
8
.
29.
Asami
,
T.
,
Nishihara
,
O.
, and
Baz
,
A. M.
,
2002
, “
Analytical Solutions to H and H2 Optimization of Dynamic Vibration Absorbers Attached to Damped Linear Systems
,”
ASME J. Vib. Acoust.
,
124
(
2
), pp.
284
295
. 10.1115/1.1456458
30.
Connor
,
J. J.
,
2003
,
Structural Motion Control
,
Pearson Education, Inc.
,
New York
.
You do not currently have access to this content.