Abstract

We expand the second-order fluid–structure coupling scheme of Farhat et al. (1998, “Load and Motion Transfer Algorithms for 19 Fluid/Structure Interaction Problems With Non-Matching Discrete Interfaces: Momentum and Energy Conservation, Optimal Discretization and Application to Aeroelasticity,” Comput. Methods Appl. Mech. Eng., 157(1–2), pp. 95–114; 2006, “Provably Second-Order Time-Accurate Loosely-Coupled Solution Algorithms for Transient Nonlinear Computational Aeroelasticity,” Comput. Methods Appl. Mech. Eng., 195(17), pp. 1973–2001) to structural acoustics. The staggered structural acoustics solution method is demonstrated to be second-order accurate in time, and numerical results are compared to a monolithically coupled system. The partitioned coupling method is implemented in the Sierra Mechanics software suite, allowing for the loose coupling of time domain acoustics in sierra/sd to structural dynamics (sierra/sd) or solid mechanics (sierra/sm). The coupling is demonstrated to work for nonconforming meshes. Results are verified for a one-dimensional piston, and the staggered and monolithic results are compared to an exact solution. Huang, H. (1969, “Transient Interaction of Plane Acoustic Waves With a Spherical Elastic Shell,” J. Acoust. Soc. Am., 45(3), pp. 661–670) sphere scattering problem with a spherically spreading acoustic load demonstrates parallel capability on a complex problem. Our numerical results compare well for a bronze plate submerged in water and sinusoidally excited (Fahnline and Shepherd, 2017, “Transient Finite Element/Equivalent Sources Using Direct Coupling and Treating the Acoustic Coupling Matrix as Sparse,” J. Acoust. Soc. Am., 142(2), pp. 1011–1024).

References

References
1.
Shin
,
Y. S.
,
2004
, “
Ship Shock Modeling and Simulation for Far-Field Underwater Explosion
,”
Comput. Struct.
,
82
(
23
), pp.
2211
2219
. 10.1016/j.compstruc.2004.03.075
2.
Gong
,
S.
, and
Lam
,
K.
,
1999
, “
Transient Response of Floating Composite Ship Section Subjected to Underwater Shock
,”
Compos. Struct.
,
46
(
1
), pp.
65
71
. 10.1016/S0263-8223(99)00046-X
3.
Molisani
,
L. R.
,
Burdisso
,
R. A.
, and
Tsihlas
,
D.
,
2003
, “
A Coupled Tire Structure/Acoustic Cavity Model
,”
Int. J. Solids Struct.
,
40
(
19
), pp.
5125
5138
. 10.1016/S0020-7683(03)00259-2
4.
Diaz
,
C. G.
,
Kindt
,
P.
,
Middelberg
,
J.
,
Vercammen
,
S.
,
Thiry
,
C.
,
Close
,
R.
, and
Leyssens
,
J.
,
2016
, “
Dynamic Behaviour of a Rolling Tyre: Experimental and Numerical Analyses
,”
J. Sound Vib.
,
364
, pp.
147
164
. 10.1016/j.jsv.2015.11.025
5.
Ghangale
,
D.
,
Colaço
,
A.
,
Costa
,
P. A.
, and
Arcos
,
R.
,
2019
, “
A Methodology Based on Structural Finite Element Method-Boundary Element Method and Acoustic Boundary Element Method Models in 2.5 D for the Prediction of Reradiated Noise in Railway-Induced Ground-Borne Vibration Problems
,”
ASME J. Vib. Acoust.
,
141
(
3
), p.
031011
. 10.1115/1.4042518
6.
Schultz
,
R.
, and
Walsh
,
T.
,
2016
,
Rotating Machinery, Hybrid Test Methods, Vibro-Acoustics & Laser Vibrometry
,
J.
De Clerck
and
D.
Epp
, eds., Vol.
8
,
Springer
,
New York
, pp.
231
242
.
7.
Stasiunas
,
E. C.
,
Schultz
,
R. A.
, and
Ross
,
M. R.
,
2016
, “Performing Direct-Field Acoustic Test Environments on a Sandia Flight System to Provide Data for Finite Element Simulation,”
Rotating Machinery, Hybrid Test Methods, Vibro-Acoustics & Laser Vibrometry
,
J.
De Clerck
and
D.
Epp
, eds., Vol.
8
,
Springer
,
New York
, pp.
267
279
.
8.
Schultz
,
R.
,
Ross
,
M.
,
Stasiunas
,
E. C.
, and
Walsh
,
T.
,
2016
, “
Finite Element Simulation of a Direct-Field Acoustic Test of a Flight System Using Acoustic Source Inversion
,” Tech. Rep.,
Sandia National Laboratories (SNL-NM)
,
Albuquerque, NM
.
9.
Yerrapragada
,
K.
, and
Salehian
,
A.
,
2019
, “
Analytical Study of Coupling Effects for Vibrations of Cable-Harnessed Beam Structures
,”
ASME J. Vib. Acoust.
,
141
(
3
), p.
031001
. 10.1115/1.4042042
10.
Huang
,
H.
,
1969
, “
Transient Interaction of Plane Acoustic Waves With a Spherical Elastic Shell
,”
J. Acoust. Soc. Am.
,
45
(
3
), pp.
661
670
. 10.1121/1.1911437
11.
Fahnline
,
J. B.
, and
Shepherd
,
M. R.
,
2017
, “
Transient Finite Element/Equivalent Sources Using Direct Coupling and Treating the Acoustic Coupling Matrix as Sparse
,”
J. Acoust. Soc. Am.
,
142
(
2
), pp.
1011
1024
. 10.1121/1.4998591
12.
Atalla
,
N.
, and
Sgard
,
F.
,
2015
,
Finite Element and Boundary Methods in Structural Acoustics and Vibration
,
CRC Press
,
Boca Raton, FL
.
13.
Walsh
,
T.
,
Jones
,
A.
,
Bhardwaj
,
M.
,
Dohrmann
,
C.
,
Reese
,
G.
, and
Wilson
,
R.
,
2013
, “
A Comparison of Transient Infinite Elements and Transient Kirchhoff Integral Methods for Far Field Acoustic Analysis
,”
J. Comput. Acoust.
,
21
(
2
), p.
1350006
. 10.1142/S0218396X13500069
14.
Bunting
,
G.
,
Prakash
,
A.
,
Walsh
,
T.
, and
Dohrmann
,
C.
,
2018
, “
Parallel Ellipsoidal Perfectly Matched Layers for Acoustic Helmholtz Problems on Exterior Domains
,”
J. Comput. Acoust.
,
26
(
2
), p.
1850015
.
15.
Everstine
,
G.
,
1997
, “
Finite Element Formulations of Structural Acoustics Problems
,”
Comput. Struct.
,
65
(
3
), pp.
307
321
. 10.1016/S0045-7949(96)00252-0
16.
Farhat
,
C.
,
Van der Zee
,
K. G.
, and
Geuzaine
,
P.
,
2006
, “
Provably Second-Order Time-Accurate Loosely-Coupled Solution Algorithms for Transient Nonlinear Computational Aeroelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
17
), pp.
1973
2001
. 10.1016/j.cma.2004.11.031
17.
Farhat
,
C.
,
Lesoinne
,
M.
, and
Le Tallec
,
P.
,
1998
, “
Load and Motion Transfer Algorithms for Fluid/Structure Interaction Problems With Non-Matching Discrete Interfaces: Momentum and Energy Conservation, Optimal Discretization and Application to Aeroelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
157
(
1–2
), pp.
95
114
. 10.1016/S0045-7825(97)00216-8
18.
Hambric
,
S. A.
,
Sung
,
S. H.
, and
Nefske
,
D. J.
,
2016
,
Engineering Vibroacoustic Analysis: Methods and Applications
,
John Wiley & Sons
,
New York
.
19.
Beranek
,
L. L.
, and
Piersol
,
A. G.
,
2006
,
Noise and Vibration Control Engineering: Principles and Applications.
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
20.
Minami
,
S.
,
Kawai
,
H.
, and
Yoshimura
,
S.
,
2012
, “
Parallel Bdd-based Monolithic Approach for Acoustic Fluid–Structure Interaction
,”
Comput. Mech.
,
50
(
6
), pp.
707
718
. 10.1007/s00466-012-0776-9
21.
Ross
,
M. R.
,
Felippa
,
C. A.
,
Park
,
K.
, and
Sprague
,
M. A.
,
2008
, “
Treatment of Acoustic Fluid–Structure Interaction by Localized Lagrange Multipliers: Formulation
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
33
), pp.
3057
3079
. 10.1016/j.cma.2008.02.017
22.
Ross
,
M. R.
,
Sprague
,
M. A.
,
Felippa
,
C. A.
, and
Park
,
K.
,
2009
, “
Treatment of Acoustic Fluid–Structure Interaction by Localized Lagrange Multipliers and Comparison to Alternative Interface-Coupling Methods
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
9
), pp.
986
1005
. 10.1016/j.cma.2008.11.006
23.
Piperno
,
S.
, and
Farhat
,
C.
,
2001
, “
Partitioned Procedures for the Transient Solution of Coupled Aeroelastic Problems–Part II: Energy Transfer Analysis and Three-Dimensional Applications
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
24–25
), pp.
3147
3170
. 10.1016/S0045-7825(00)00386-8
24.
Bunting
,
G.
,
Crane
,
N. K.
,
Day
,
D. M.
,
Dohrmann
,
C. R.
,
Ferri
,
B. A.
,
Flicek
,
R. C.
,
Hardesty
,
S.
,
Lindsay
,
P.
,
Miller
,
S. T.
,
Munday
,
L.
, and
Walsh
,
T.
,
2018
,
Sierra Structural Dynamics-Users Notes 4.50
,
Sandia National Laboratories
,
Albuquerque, NM
.
25.
Bunting
,
G.
,
Crane
,
N. K.
,
Day
,
D. M.
,
Dohrmann
,
C. R.
,
Ferri
,
B. A.
,
Flicek
,
R. C.
,
Hardesty
,
S.
,
Lindsay
,
P.
,
Miller
,
S. T.
,
Munday
,
L.
, and
Walsh
,
T.
,
2018
,
Sierra SD Theory Manual 4.50
,
Sandia National Laboratories
,
Albuquerque, NM
.
26.
Bunting
,
G.
,
2019
, “
Strong and Weak Scaling of the Sierra/SD Eigenvector Problem to a Billion Degrees of Freedom
,” SAND 2019–1217,
Sandia National Lab. (SNL-NM)
,
Albuquerque, NM
.
27.
Aquino
,
W.
,
Bunting
,
G.
,
Miller
,
S. T.
, and
Walsh
,
T. F.
,
2018
, “
A Gradient-Based Optimization Approach for the Detection of Partially Connected Surfaces Using Vibration Tests
,”
Comput. Methods Appl. Mech. Eng.
,
345
, pp.
323
335
. 10.1016/j.cma.2018.11.002
28.
Moyer
,
T.
,
Stergiou
,
J.
,
Reese
,
G.
,
Luton
,
J.
, and
Abboud
,
N.
,
2016
, “
Navy Enhanced Sierra Mechanics (NESM): Toolbox for Predicting Navy Shock and Damage
,”
Comput. Sci. Eng.
,
18
(
6
), pp.
10
18
. 10.1109/MCSE.2016.47
29.
Scavuzzo
,
R. J.
, and
Pusey
,
H. C.
,
2000
,
Naval Shock Analysis and Design
,
Shock and Vibration Information Analysis Center, Booz-Allen and Hamilton, Incorporated
,
McLean, VA
.
30.
Hughes
,
T. J.
,
2012
,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Courier Corporation
,
North Chelmsford, MA
.
31.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
,
2007
,
Concepts and Applications of Finite Element Analysis
,
John Wiley & Sons
,
New York
.
32.
Felippa
,
C. A.
,
Park
,
K.
, and
Farhat
,
C.
,
2001
, “
Partitioned Analysis of Coupled Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
24
), pp.
3247
3270
. 10.1016/S0045-7825(00)00391-1
You do not currently have access to this content.