Abstract

This paper presents a general approach for the free vibration analysis of curvilinearly stiffened rectangular and quadrilateral plates using the Ritz method by employing classical orthogonal Jacobi polynomials. Both the plate and stiffeners are modeled using first-order shear deformation theory (FSDT). The displacement and rotations of the plate and stiffeners are approximated by separate sets of Jacobi polynomials. The ease of modification of the Jacobi polynomials enables the Jacobi weight function to satisfy geometric boundary conditions without loss of orthogonality. The distinctive advantage of Jacobi polynomials, over other polynomial-based trial functions, lies in that their use eliminates the well-known ill-conditioning issues when a high number of terms are used in the Ritz method, e.g., to obtain higher modes required for vibro-acoustic analysis. In this paper, numerous case studies are undertaken by considering various sets of boundary conditions. The results are verified both with the detailed finite element analysis (FEA) using commercial software msc.nastran and with those available in the open literature. New formulation and results include: (i) exact boundary condition enforcement through Jacobi weight function for FSDT, (ii) formulation of quadrilateral plates with curvilinear stiffeners, and (iii) use of higher order Gauss quadrature scheme for required integral evaluations to obtain higher modes. It is demonstrated that the presented method provides good numerical stability and highly accurate results. The given new numerical results and convergence studies may serve as benchmark solutions for validating the new computational techniques.

References

1.
Xie
,
K.
,
Chen
,
M.
, and
Li
,
Z.
,
2017
, “
Free and Forced Vibration Analysis of Ring-Stiffened Conical-Ccylindrical–Spherical Shells Through a Semi-Analytic Method
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
031001
. 10.1115/1.4035482
2.
Locatelli
,
D.
,
Mulani
,
S. B.
, and
Kapania
,
R. K.
,
2011
, “
Wing-Box Weight Optimization Using Curvilinear Spars and Ribs (Sparibs)
,”
J. Aircraft
,
48
(
5
), pp.
1671
1684
. 10.2514/1.C031336
3.
Doherty
,
C. G.
,
Southward
,
S. C.
, and
Hull
,
A. J.
,
2018
, “
Elastic Response of Acoustic Coating on Fluid-Laded Rib-Stiffened Cylindrical Shells
,”
ASME J. Vib. Acoust.
,
141
(
1
), p.
011020
. 10.1115/1.4041306
4.
Locatelli
,
D.
,
2012
, “
Optimization of Supersonic Aircraft Wing-Box using Curvilinear Sparibs
,” Ph.D. thesis,
Virginia Tech
,
Blacksburg, VA
.
5.
Kapania
,
R. K.
,
Li
,
J.
, and
Kapoor
,
H.
,
2005
, “
Optimal Design of Unitized Panels With Curvilinear Stiffeners
,”
AIAA 5th ATIO/16th Lighter-Than-Air and Balloon Systems Conferences
,
Arlington, VA
,
Sept. 26–28
, p.
7482
.
6.
Zhao
,
W.
, and
Kapania
,
R. K.
,
2018
, “
BLP Optimization of Composite Flying-Wings With Sparibs and Multiple Control surfaces
,”
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Kissimmee, FL
,
Jan. 8–12
, p.
2150
.
7.
Zhao
,
W.
,
2017
, “
Optimal Design and Analysis of Bio-Inspired, Curvilinearly Stiffened Composite Flexible Wings
,” Ph.D. thesis,
Virginia Tech
,
Blacksburg, VA
.
8.
Liu
,
Q.
,
Jrad
,
M.
,
Mulani
,
S. B.
, and
Kapania
,
R. K.
,
2016
, “
Global/Local Optimization of Aircraft Wing Using Parallel Processing
,”
AIAA J.
,
54
(
11
), pp.
3338
3348
. 10.2514/1.J054499
9.
Shi
,
P.
,
Kapania
,
R. K.
, and
Dong
,
C.
,
2015
, “
Vibration and Buckling Analysis of Curvilinearly Stiffened Plates Using Finite Element Method
,”
AIAA J.
,
53
(
5
), pp.
1319
1335
. 10.2514/1.J053358
10.
Shi
,
P.
,
Kapania
,
R. K.
, and
Dong
,
C.
,
2015
, “
Free Vibration of Curvilinearly Stiffened Shallow Shells
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031006
. 10.1115/1.4029360
11.
Zhao
,
W.
, and
Kapania
,
R. K.
,
2016
, “
Vibration Analysis of Curvilinearly Stiffened Composite Panel Subjected to In-Plane Loads
,”
AIAA J.
,
55
(
3
), pp.
981
997
. 10.2514/1.J055047
12.
Zhao
,
W.
, and
Kapania
,
R. K.
,
2016
, “
Buckling Analysis of Unitized Curvilinearly Stiffened Composite Panels
,”
Compos. Struct.
,
135
, pp.
365
382
. 10.1016/j.compstruct.2015.09.041
13.
Singh
,
K.
,
Zhao
,
W.
, and
Kapania
,
R. K.
,
2017
, “
Optimal Design of Curvilinearly Stiffened Shells
,”
58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Grapevine, TX
,
Jan. 9–13
, AIAA SciTech Forum (AIAA 2017-1830).
14.
Singh
,
K.
,
Zhao
,
W.
, and
Kapania
,
R. K.
,
2017
, “
An Optimization Framework for Curvilinearly Stiffened Composite Pressure Vessels and Pipes
,”
ASME 2017 Pressure Vessels and Piping Conference, Vol. 3A: Design and Analysis
,
Waikoloa, HI
,
July 16–20
, p.
V03AT03A066
.
15.
Singh
,
K.
, and
Kapania
,
R. K.
,
2018
, “
Optimal Design of Tow-Steered Composite Laminates With Curvilinear Stiffeners
,”
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Kissimmee, FL
,
Jan. 8–12
, AIAA SciTech Forum (AIAA 2018-2243).
16.
Tamijani
,
A. Y.
, and
Kapania
,
R. K.
,
2012
, “
Chebyshev-Ritz Approach to Buckling and Vibration of Curvilinearly Stiffened Plate
,”
AIAA J.
,
50
(
5
), pp.
1007
1018
. 10.2514/1.J050042
17.
Tamijani
,
A. Y.
,
McQuigg
,
T.
, and
Kapania
,
R. K.
,
2010
, “
Free Vibration Analysis of Curvilinear-Stiffened Plates and Experimental Validation
,”
J. Aircraft
,
47
(
1
), pp.
192
200
. 10.2514/1.44613
18.
Tamijani
,
A. Y.
, and
Kapania
,
R. K.
,
2010
, “
Vibration of Plate With Curvilinear Stiffeners Using Mesh-Free Method
,”
AIAA J.
,
48
(
8
), pp.
1569
1581
. 10.2514/1.43082
19.
Tamijani
,
A. Y.
, and
Kapania
,
R. K.
,
2010
, “
Buckling and Static Analysis of Curvilinearly Stiffened Plates Using Mesh-Free Method
,”
AIAA J.
,
48
(
12
), pp.
2739
2751
. 10.2514/1.43917
20.
Liew
,
K.
, and
Wang
,
C.
,
1993
, “
pb-2 Rayleigh-Ritz Method for General Plate Analysis
,”
Eng. Struct.
,
15
(
1
), pp.
55
60
. 10.1016/0141-0296(93)90017-X
21.
Liew
,
K.
,
Xiang
,
Y.
,
Kitipornchai
,
S.
, and
Lim
,
M.
,
1994
, “
Vibration of Rectangular Mindlin Plates With Intermediate Stiffeners
,”
ASME J. Vib. Acoust.
,
116
(
4
), pp.
529
535
. 10.1115/1.2930459
22.
Liew
,
K.
, and
Wang
,
C.
,
1992
, “
Vibration Analysis of Plates by the Pb-2 Rayleigh-Ritz Method: Mixed Boundary Conditions, Reentrant Corners, and Internal Curved Supports
,”
J. Struct. Mech.
,
20
(
3
), pp.
281
292
. 10.1080/08905459208905170
23.
Fletcher
,
C. A. J.
,
1984
,
Computational Galerkin Methods
, 1st ed.,
H.
Cabanne
,
M.
Holt
,
H. B.
Keller
,
J.
Killeen
, and
S. A.
Orszag
, eds.,
Springer-Verlag New York Inc.
,
New York
, pp.
1
71
. 10.1007/978-3-642-85949-6
24.
Bhat
,
R.
,
1985
, “
Natural Frequencies of Rectangular Plates Using Characteristic Orthogonal Polynomials in Rayleigh-Ritz Method
,”
J. Sound. Vib.
,
102
(
4
), pp.
493
499
. 10.1016/S0022-460X(85)80109-7
25.
Bhat
,
R.
,
1987
, “
Flexural Vibration of Polygonal Plates Using Characteristic Orthogonal Polynomials in Two Variables
,”
J. Sound. Vib.
,
114
(
1
), pp.
65
71
. 10.1016/S0022-460X(87)80234-1
26.
Bhat
,
R. B.
,
2015
, “
Vibration of Beams Using Novel Boundary Characteristic Orthogonal Polynomials Satisfying All Boundary Conditions
,”
Adv. Mech. Eng.
,
7
(
4
),
1
7
10.1177/1687814015578355.
27.
Kapania
,
R. K.
, and
Singhvi
,
S.
,
1992
, “
Free Vibration Analyses of Generally Laminated Tapered Skew Plates
,”
Compos. Eng.
,
2
(
3
), pp.
197
212
. 10.1016/0961-9526(92)90004-P
28.
Kapania
,
R. K.
, and
Lovejoy
,
A. E.
,
1996
, “
Free Vibration of Thick Generally Laminated Cantilever Quadrilateral Plates
,”
AIAA J.
,
34
(
7
), pp.
1474
1486
. 10.2514/3.13256
29.
Kapania
,
R. K.
, and
Lovejoy
,
A. E.
,
1998
, “
Free Vibration of Thick Generally Laminated Quadrilateral Plates Having Arbitrarily Located Point Supports
,”
J. Aircraft
,
35
(
6
), pp.
958
965
. 10.2514/2.2392
30.
Alanbay
,
B.
, and
Kapania
,
R. K.
,
2018
, “
On the Use of Classical Jacobi Orthogonal Polynomials in the Ritz Method
,”
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Kissimmee, FL
,
Jan. 8–12
, p.
1225
.
31.
Caruntu
,
D. I.
,
2007
, “
Classical Jacobi Polynomials, Closed-Form Solutions for Transverse Vibrations
,”
J. Sound. Vib.
,
306
(
3-5
), pp.
467
494
. 10.1016/j.jsv.2007.05.046
32.
Ditkowski
,
A.
, and
Kats
,
R.
,
2016
, “
On Spectral Approximations With Nonstandard Weight Functions and Their Implementations to Generalized Chaos Expansions
,” arXiv preprint arXiv:1611.00242.
33.
Kitipornchai
,
S.
,
Liew
,
K.
,
Xiang
,
Y.
, and
Wang
,
C.
,
1993
, “
Free Vibration of Isosceles Triangular Mindlin Plates
,”
Int. J. Mech. Sci.
,
35
(
2
), pp.
89
102
. 10.1016/0020-7403(93)90068-6
34.
Szego
,
G.
,
1967
,
Orthogonal Polynomials
, 3rd ed.,
American Mathematical Society
,
Providence, RI
.
35.
Kapania
,
R. K.
, and
Liu
,
Y.
,
2000
, “
Static and Vibration Analyses of General Wing Structures Using Equivalent-Plate Models
,”
AIAA J.
,
38
(
7
), pp.
1269
1277
. 10.2514/2.1098
36.
Martini
,
L.
, and
Vitaliani
,
R.
,
1988
, “
On the Polynomial Convergent Formulation of a C0 Isoparametric Skew Beam Element
,”
Comput. Struct.
,
29
(
3
), pp.
437
449
. 10.1016/0045-7949(88)90396-3
37.
Hale
,
N.
, and
Townsend
,
A.
,
2013
, “
Fast and Accurate Computation of Gauss–Legendre and Gauss–Jacobi Quadrature Nodes and Weights
,”
SIAM J. Sci. Comput.
,
35
(
2
), pp.
A652
A674
. 10.1137/120889873
You do not currently have access to this content.