Abstract

The methods described allow one to directly measure the individual branches of the Campbell diagram of a physical gyroscopic system at any rotation speed. Typically, such data are acquired by exciting the vibration modes through naturally occurring unbalance forces. During run-up, these forces expose some of the Campbell diagram, but mainly the forward whirling branches, leaving the backward whirling branches mostly hidden. Furthermore, good modal frequency data are only acquired at critical speeds. The methods proposed here allow one to excite either a forward or backward whirling mode at any rotation speed in a precisely controlled manner, greatly improving the quality of an acquired Campbell diagram. The technique employs an external excitation device that automatically produces oscillating forces at a chosen modal frequency. Control is based on the autoresonance feedback algorithm, which can excite a mechanical system at resonance effectively. It will also be shown that with two actuators and two sensors, one can choose which bending mode to excite at resonance in either the forward or backward whirling direction. As the rotation speed is then gradually increased, one can measure the speed dependence of the resonance frequency. Furthermore, when combining autoresonance with a phase-locked loop, one can acquire very clean measurements by removing most of the noise generated by the unbalance and other sources. The technique is demonstrated analytically, numerically, and experimentally.

References

1.
Friedt
,
J.
, and
Carry
,
E.
,
2007
, “
Introduction to the Quartz Tuning Fork
,”
Am. J. Phys.
,
5
, pp.
415
422
.
2.
Rahman
,
A.
,
Ghaffar
,
A.
,
Ong Zhi
,
C.
, and
Zubaidah
,
I.
,
2011
, “
Effectiveness of Impact-Synchronous Time Averaging in Determination of Dynamic Characteristics of a Rotor Dynamic System
,”
Measurement
,
44
(
1
), pp.
34
45
. 10.1016/j.measurement.2010.09.005
3.
Al-Araji
,
S. R.
,
Hussain
,
Z. M.
, and
Al-Qutayri
,
M. A.
,
2006
,
Digital Phase Lock Loops Architectures and Applications
,
Springer
,
Dordrecht
.
4.
Boiko
,
I.
,
2018
,
Non-Parametric Tuning of PID Controllers
,
Springer
,
London
.
5.
Bucher
,
I.
, and
Ewins
,
D. J.
,
2001
, “
Modal Analysis and Testing of Rotating Structures
,”
Philos. Trans. Math. Phys. Eng. Sci.
,
359
(
1778
), pp.
61
96
. 10.1098/rsta.2000.0714
6.
Carne
,
T. G.
, and
Nord
,
A. R.
,
1983
,
Modal Testing of a Rotating Wind Turbine
,
Sandia National Laboratories
,
Albuquerque, NM
.
7.
Chitode
,
J. S.
,
2007
,
Principles of Communication
,
Technical Publications
,
Pune
.
8.
Davis
,
S.
, and
Bucher
,
I.
,
2017
, “
Automatic Vibration Mode Selection and Excitation; Combining Modal Filtering With Autoresonance
,”
Mech. Syst. Signal. Process.
,
101
(
1
), pp.
140
155
.
9.
Davis
,
S.
,
Gabai
,
R.
, and
Bucher
,
I.
,
2018
, “
Realization of an Automatic, Contactless, Acoustic Levitation Motor via Degenerate Mode Excitation and Autoresonance
,”
Sens. Actuators A
,
276
(
1
), pp.
34
42
. 10.1016/j.sna.2018.03.021
10.
Elnady
,
M. E.
,
Sinha
,
J. K.
, and
Oyadiji
,
S. O.
,
2012
, “
Identification of Critical Speeds of Rotating Machines Using On-Shaft Wireless Vibration Measurement
,”
J. Phys. Conf. Ser.
,
364
(
1
), p.
012142
. 10.1088/1742-6596/364/1/012142
11.
Ewins
,
D. J.
,
2000
,
Modal Testing
,
Research Studies Press Ltd.
,
Philadelphia
.
12.
Ferdinskoif
,
A.
,
2018
,
Laboratory Platform for Simulation, Validation and Design of High-Speed Rotors
,
Technion
,
Haifa, Israel
.
13.
Gabay
,
R.
, and
Bucher
,
I.
,
2006
, “
Resonance Tracking in a Squeeze-Film Levitation Device
,”
Mech. Syst. Signal. Process.
,
20
(
7
), pp.
1696
1724
. 10.1016/j.ymssp.2005.03.001
14.
Gawronski
,
W.
,
2004
,
Advanced Structural Dyamics and Active Control of Structures
,
Springer Science & Business Media
,
New York
.
15.
Gelb
,
A.
, and
Vender Velde
,
W. E.
,
1968
,
Multiple-Input Describing Functions and Nonlinear System Design
,
McGraw-Hill Book Company
,
New York
.
16.
Genta
,
G.
,
2007
,
Dynamics of Rotating Systems
,
Springer Science & Business Media
,
New York
.
17.
Geradin
,
M.
, and
Rixen
,
D.
,
1998
,
Mechanical Vibrations: Theory and Applications to Structural Dynamics
,
John Wiley & Sons Ltd.
,
New York
.
18.
Haugstad
,
G.
,
2012
,
Atomic Force Microscopy: Understanding Basic Modes and Advanced Applications
,
John Wiley & Sons, Inc.
,
New York
.
19.
Heij
,
C.
,
de Boer
,
P.
,
Franses
,
P. H.
,
Kloek
,
T.
, and
van Dijk
,
H.
,
2004
,
Econometric Methods With Applications in Business and Economics
,
Oxford University Press
,
Oxford
.
20.
Hughes
,
A.
,
2006
,
Electric Motors and Drives: Fundamentals, Types and Applications
,
Elsevier
,
London
.
21.
Ishida
,
Y.
, and
Yamamoto
,
T.
,
2013
,
Linear and Nonlinear Rotordynamics: A Modern Treatment With Applications
,
John Wiley & Sons
,
New York
.
22.
Jalali
,
M. H.
,
Ghayour
,
M.
,
Ziaei-Rad
,
S.
, and
Shahriar
,
B.
,
2014
, “
Dynamic Analysis of a High Speed Rotor-Bearing System
,”
Measurement
,
53
(
1
), pp.
1
9
. 10.1016/j.measurement.2014.03.010
23.
Johnson
,
M. A.
, and
Moradi
,
M. H.
,
2005
,
PID Control: New Identification and Design Methods
,
Springer
,
London
.
24.
Kim
,
H.
, and
Shen
,
I. Y.
,
2009
, “
Ground-Based Vibration Response of a Spinning, Cyclic, Symmetric Rotor With Gyroscopic and Centrifugal Softening Effects
,”
ASME J. Vib. Acoust.
,
131
(
2
), p.
021007
. 10.1115/1.3025847
25.
Lee
,
C.-W.
, and
Seo
,
Y.-H.
,
2010
, “
Enhanced Campbell Diagram With the Concept of H-Infinity in Rotating Machinery: Lee Diagram
,”
ASME J. Appl. Mech.
,
77
(
2
), p.
021012
. 10.1115/1.3173610
26.
Sawicki
,
J. T.
,
Pesch
,
A. H.
,
Friswell
,
M. I.
, and
Wroblewski
,
A.
,
2008
, “
Condition Monitoring of Rotor Using Active Magnetic Actuator
,”
Proceedings of ASME Turbo Expo
,
Berlin
,
June 9–13
.
27.
Sinou
,
J.-J.
,
Villa
,
C.
, and
Thouverez
,
F.
,
2005
, “
Experimental and Numerical Investigations of a Flexible Rotor on Flexible Bearing Supports
,”
Int. J. Rotating Mach.
,
2005
(
3
), pp.
179
189
. 10.1155/IJRM.2005.179
28.
Stanbridge
,
A. B.
, and
Ewins
,
D. J.
,
1996
, “
Modal Testing of Unconstrained Rotors
,”
IMechE Conference Transactions
, Vol.
6
,
Mechanical Engineering Publications
.
29.
Subbiah
,
R.
, and
Littleton
,
J. E.
,
2018
,
Rotor and Structural Dynamics of Turbomachinery: A Practical Guide for Engineers and Scientists
,
Springer
,
New York
.
30.
Vervisch
,
B.
,
Derammelaere
,
S.
,
Stockman
,
K.
, and
Loccufier
,
M.
,
2014
, “
Frequency Response Functions and Modal Parameters of a Rotating System Exhibiting Rotating Damping
,”
International Conference on Noise and Vibration Engineering (ISMA)
,
Leuven, Belgium
,
Sept. 15–17
.
31.
Wang
,
W.
, and
Kirkhope
,
J.
,
1994
, “
New Eigensolutions and Modal Analysis for Gyroscopic/Rotor Systems, Part 1: Undamped Systems
,”
J. Sound Vib.
,
174
(
2
), pp.
159
170
. 10.1006/jsvi.1994.1320
You do not currently have access to this content.