Abstract

An operational modal response method for application to the structure health and integrity of pipelines is investigated. The modal response characteristics of externally supported pipe structures are quantified through flow Reynolds number (Red) variation. Pipe flow turbulence and the resulting hydrodynamic pressure fluctuations on the interior pipe wall provide the structural forcing mechanism, and signals from wall-mounted accelerometers provide the system response. During experiments, the Reynolds number is varied from 51,000 to 154,000. Over this Reynolds number range, the pipe flow turbulence was found sufficient enough to excite the structure at frequencies up to 400 Hz. Modal response characteristics obtained through Reynolds number variation were found to be in agreement with results from impact hammer modal testing. The in-situ modal response method developed was applied to two different structural health monitoring investigations, one involving loss-of-material and the other involving loss-of-fluid. The loss-of-material scenario simulated the process of external pipe wall corrosion, and the developed method was able to detect material loss as small as 1.4%. The loss-of-fluid scenario simulated a small leak. Despite the low operating pressure of 0.024 MPa, the methodology was able to detect fluid loss as low as 0.1% of the bulk flow rate. The developed method has the potential to offer in-situ continuous pipeline health monitoring that relies on the continuous changes (flow rate, product viscosity, product density) that are inherent to an operational pipeline system.

References

References
1.
Dudley
,
B.
,
2017
.
Bp Statistical Review of World Energy
. http://www.bp.com [
2018
-
03
].
2.
Dziubinski
,
M.
,
Fratczak
,
M.
, and
Markowski
,
A. S.
,
2006
, “
Aspects of Risk Analysis Associated With Major Failures of Fuel Pipelines
,”
J. Loss Prevention Process Ind.
,
19
(
5
), pp.
399
408
. 10.1016/j.jlp.2005.10.007
3.
Teixeira
,
A. P.
,
Soares
,
C. G.
,
Netto
,
T. A.
, and
Estefen
,
S. F.
,
2008
, “
Reliability of Pipelines With Corrosion Defects
,”
Int. J. Pressure Vessels Piping
,
85
(
4
), pp.
228
237
. 10.1016/j.ijpvp.2007.09.002
4.
Papadakis
,
G. A.
,
1999
, “
Major Hazard Pipelines: A Comparative Study of Onshore Transmission Accidents
,”
J. Loss Prevention Process Ind.
,
12
(
1
), pp.
91
107
. 10.1016/S0950-4230(98)00048-5
5.
API
,
2013
,
API Recommended Practice 1160: Managing System Integrity for Hazardous Liquids Pipelines
,
American Petroleum Institute
,
Washington, DC
, Standard No. API STD 1160.
6.
Kishawy
,
H. A.
, and
Gabbar
,
H. A.
,
2010
, “
Review of Pipeline Integrity Management Practices
,”
Int. J. Pressure Vessels Piping
,
87
(
7
), pp.
373
380
. 10.1016/j.ijpvp.2010.04.003
7.
Vanaei
,
H. R.
,
Eslami
,
A.
, and
Egbewande
,
A.
,
2017
, “
A Review on Pipeline Corrosion, In-Line Inspection (ILI), and Corrosion Growth Rate Models
,”
Int. J. Pressure Vessels Piping
,
149
, pp.
43
54
. 10.1016/j.ijpvp.2016.11.007
8.
Tajallipour
,
N.
,
Teevens
,
P. J.
,
Akanni
,
W.
,
Lien
,
H. C. A.
, and
Mohan
,
A.
,
2015
, “
Multiphase Flow Internal Corrosion Direct Assessment (MP-ICDA) for the Tambaredjo North West (TNW) Pipeline
,”
CORROSION 2015.
NACE International
.
9.
Tanimola
,
F.
, and
Hill
,
D.
,
2009
, “
Distributed Fibre Optic Sensors for Pipeline Protection
,”
J. Nat. Gas Sci. Eng.
,
1
(
4–5
), pp.
134
143
. 10.1016/j.jngse.2009.08.002
10.
Inaudi
,
D.
, and
Glisic
,
B.
,
2010
, “
Long-Range Pipeline Monitoring by Distributed Fiber Optic Sensing
,”
ASME J. Pressure Vessel Technol.
,
132
(
1
), p.
011701
. 10.1115/1.3062942
11.
Bao
,
X.
, and
Chen
,
L.
,
2012
, “
Recent Progress in Distributed Fiber Optic Sensors
,”
Sensors
,
12
(
7
), pp.
8601
8639
. 10.3390/s120708601
12.
Murvay
,
P.
, and
Silea
,
I.
,
2012
, “
A Survey on Gas Leak Detection and Localization Techniques
,”
J. Loss Prevention Process Ind.
,
25
(
6
), pp.
966
973
. 10.1016/j.jlp.2012.05.010
13.
Datta
,
S.
, and
Sarkar
,
S.
,
2016
, “
A Review on Different Pipeline Fault Detection Methods
,”
J. Loss Prevention Process Ind.
,
41
, pp.
97
106
. 10.1016/j.jlp.2016.03.010
14.
Ozevin
,
D.
, and
Harding
,
J.
,
2012
, “
Novel Leak Localization in Pressurized Pipeline Networks Using Acoustic Emission and Geometric Connectivity
,”
Int. J. Pressure Vessels Piping
,
92
, pp.
63
69
. 10.1016/j.ijpvp.2012.01.001
15.
Xu
,
C.
,
Gong
,
P.
,
Xie
,
J.
,
Shi
,
H.
,
Chen
,
G.
, and
Song
,
G.
,
2016
, “
An Acoustic Emission Based Multi-Level Approach to Buried Gas Pipeline Leakage Location
,”
J. Loss Prevention Process Ind.
,
44
, pp.
397
404
. 10.1016/j.jlp.2016.10.014
16.
Zou
,
L.
,
Ferrier
,
A.
,
Afshar
,
S.
,
Yu
,
Q.
,
Chen
,
L.
, and
Bao
,
X.
,
2004
, “
Distributed Brillouin Scattering Sensor for Discrimination of Wall-Thinning Defects in Steel Pipe Under Internal Pressure
,”
Appl. Opt.
,
43
(
7
), pp.
1583
1588
. 10.1364/AO.43.001583
17.
Jiang
,
T.
,
Ren
,
L.
,
Jia
,
Z.
,
Li
,
D.
, and
Li
,
H.
,
2017
, “
Pipeline Internal Corrosion Monitoring Based on Distributed Strain Measurement Technique
,”
Struct. Control Health Monit.
,
24
(
11
), p.
11
. 10.1002/stc.2016
18.
Ren
,
L.
,
Jiang
,
T.
,
Jia
,
Z.-g.
,
Li
,
D.-s.
,
Yuan
,
C.-l.
, and
Li
,
H.-n.
,
2018
, “
Pipeline Corrosion and Leakage Monitoring Based on the Distributed Optical Fiber Sensing Technology
,”
Measurement
,
122
, pp.
57
65
. 10.1016/j.measurement.2018.03.018
19.
Jia
,
Z.
,
Ren
,
L.
,
Li
,
H.
,
Ho
,
S.
, and
Song
,
G.
,
2015
, “
Experimental Study of Pipeline Leak Detection Based on Hoop Strain Measurement
,”
Struct. Control Health Monit.
,
22
(
5
), pp.
799
812
. 10.1002/stc.1718
20.
Liu
,
J.
,
Su
,
H.
,
Ma
,
Y.
,
Wang
,
G.
,
Wang
,
Y.
, and
Zhang
,
K.
,
2016
, “
Chaos Characteristics and Least Squares Support Vector Machines Based Online Pipeline Small Leakages Detection
,”
Chaos, Solitons Fractals
,
91
, pp.
656
669
. 10.1016/j.chaos.2016.09.002
21.
Lowe
,
M.
,
Alleyne
,
D.
, and
Cawley
,
P.
,
1998
, “
Defect Detection in Pipes Using Guided Waves
,”
Ultrasonics
,
36
(
1–5
), pp.
147
154
. 10.1016/S0041-624X(97)00038-3
22.
Feng
,
Q.
,
Kong
,
Q.
,
Huo
,
L.
, and
Song
,
G.
,
2015
, “
Crack Detection and Leakage Monitoring on Reinforced Concrete Pipe
,”
Smart Mater. Struct.
,
24
(
11
), p.
8
. 10.1088/0964-1726/24/11/115020
23.
Kajiwara
,
I.
,
Akita
,
R.
, and
Hosoya
,
N.
,
2018
, “
Damage Detection in Pipes Based on Acoustic Excitations Using Laser-Induced Plasma
,”
Mech. Syst. Signal Process.
,
111
, pp.
570
579
. 10.1016/j.ymssp.2018.04.004
24.
Naniwadekar
,
M.
,
Naik
,
S.
, and
Maiti
,
S.
,
2008
, “
On Prediction of Crack in Different Orientations in Pipe Using Frequency Based Approach
,”
Mech. Syst. Signal Process.
,
22
(
3
), pp.
693
708
. 10.1016/j.ymssp.2007.09.007
25.
Esmaeel
,
R. A.
,
Briand
,
J.
, and
Taheri
,
F.
,
2012
, “
Computational Simulation and Experimental Verification of a new Vibration-Based Structural Health Monitoring Approach Using Piezoelectric Sensors
,”
Struct. Health. Monit.
,
11
(
2
), pp.
237
250
. 10.1177/1475921711414239
26.
Razi
,
P.
,
Esmaeel
,
R. A.
, and
Taheri
,
F.
,
2013
, “
Improvement of a Vibration-Based Damage Detection Approach for Health Monitoring of Bolted Flange Joints in Pipelines
,”
Struct. Health. Monit.
,
12
(
3
), pp.
207
224
. 10.1177/1475921713479641
27.
Murigendrappa
,
S.
,
Maiti
,
S.
, and
Srirangarajan
,
H.
,
2004
, “
Experimental and Theoretical Study on Crack Detection in Pipes Filled With Fluid
,”
J. Sound Vib.
,
270
(
4–5
), pp.
1013
1032
. 10.1016/S0022-460X(03)00198-6
28.
Murigendrappa
,
S.
,
Maiti
,
S.
, and
Srirangarajan
,
H.
,
2004
, “
Frequency-based Experimental and Theoretical Identification of Multiple Cracks in Straight Pipes Filled With Fluid
,”
NDT & E Int.
,
37
(
6
), pp.
431
438
. 10.1016/j.ndteint.2003.11.009
29.
Dilena
,
M.
,
Dell’Oste
,
M. F.
, and
Morassi
,
A.
,
2011
, “
Detecting Cracks in Pipes Filled With Fluid From Changes in Natural Frequencies
,”
Mech. Syst. Signal Process.
,
25
(
8
), pp.
3186
3197
. 10.1016/j.ymssp.2011.04.013
30.
Schwarz
,
B. J.
, and
Richardson
,
M. H.
,
1999
, “
Experimental Modal Analysis
,”
CSI Reliability Week
,
35
(
1
), pp.
1
12
.
31.
Ivanovic
,
S. S.
,
Trifunac
,
M. D.
, and
Todorovska
,
M.
,
2000
, “
Ambient Vibration Tests of Structures-a Review
,”
ISET J. Earthquake Technol.
,
37
(
4
), pp.
165
197
.
32.
Li
,
B.
,
Luo
,
B.
,
Mao
,
X.
,
Cai
,
H.
,
Peng
,
F.
, and
Liu
,
H.
,
2013
, “
A New Approach to Identifying the Dynamic Behavior of CNC Machine Tools With Respect to Different Worktable Feed Speeds
,”
Int. J. Mach. Tools Manuf.
,
72
, pp.
73
84
. 10.1016/j.ijmachtools.2013.06.004
33.
Doebling
,
S. W.
,
Farrar
,
C. R.
, and
Cornwell
,
P.
,
1996
,
A Statistical Comparison of Impact and Ambient Testing Results From the Alamosa Canyon Bridge
, Technical Report,
Los Alamos National Laboratory
,
NM
.
34.
Li
,
Z.
,
Feng
,
M. Q.
,
Luo
,
L.
,
Feng
,
D.
, and
Xu
,
X.
,
2018
, “
Statistical Analysis of Modal Parameters of a Suspension Bridge Based on Bayesian Spectral Density Approach and SHM Data
,”
Mech. Syst. Signal Process.
,
98
, pp.
352
367
. 10.1016/j.ymssp.2017.05.005
35.
Nichols
,
J.
,
2003
, “
Structural Health Monitoring of Offshore Structures Using Ambient Excitation
,”
Appl. Ocean Res.
,
25
(
3
), pp.
101
114
. 10.1016/j.apor.2003.08.003
36.
Bajrić
,
A.
,
Høgsberg
,
J.
, and
Rüdinger
,
F.
,
2018
, “
Evaluation of Damping Estimates by Automated Operational Modal Analysis for Offshore Wind Turbine Tower Vibrations
,”
Renewable Energy
,
116
(
Part B
), pp.
153
163
. 10.1016/j.renene.2017.03.043
37.
Zhang
,
Q.
,
2007
, “
Statistical Damage Identification for Bridges Using Ambient Vibration Data
,”
Comput. Struct.
,
85
(
7–8
), pp.
476
485
. 10.1016/j.compstruc.2006.08.071
38.
Munson
,
B. R.
,
Okiishi
,
T. H.
,
Huebsch
,
W. W.
, and
Rothmayer
,
A. P.
,
2013
,
Fluid Mechanics
,
Wiley
,
Singapore
.
39.
Hill
,
R. J.
, and
Wilczak
,
J. M.
,
1995
, “
Pressure Structure Functions and Spectra for Locally Isotropic Turbulence
,”
J. Fluid Mech.
,
296
, pp.
247
269
. 10.1017/S0022112095002126
40.
Durant
,
C.
, and
Robert
,
G.
,
1998
, “
Vibro-Acoustic Response of a Pipe Excited by a Turbulent Internal Flow
,”
Flow, Turbulence Combust.
,
61
(
1–4
), pp.
55
69
. 10.1023/A:1026428616296
41.
Home
,
M.
, and
Handler
,
R.
,
1991
, “
Note on the Cancellation of Contaminating Noise in the Measurement of Turbulent Wall Pressure Fluctuations
,”
Exp. Fluids
,
12
(
1–2
), pp.
136
139
. 10.1007/BF00226580
42.
Borisyuk
,
A.
,
2010
, “
Experimental Study of Wall Pressure Fluctuations in Rigid and Elastic Pipes Behind an Axisymmetric Narrowing
,”
J. Fluids Struct.
,
26
(
4
), pp.
658
674
. 10.1016/j.jfluidstructs.2010.03.005
43.
Willmarth
,
W. W.
, and
Wooldridge
,
C. E.
,
1962
, “
Measurements of the Fluctuating Pressure at the Wall Beneath a Thick Turbulent Boundary Layer
,”
J. Fluid Mech.
,
14
(
2
), pp.
187
210
. 10.1017/S0022112062001160
44.
Dinkelacker
,
A.
,
1966
, “
Preliminary Experiments on the Influence of Flexible Walls on Boundary Layer Turbulence
,”
J. Sound Vib.
,
4
(
2
), pp.
187
214
. 10.1016/0022-460X(66)90121-0
45.
Rajtar
,
J. M.
, and
Muthiah
,
R.
,
1997
, “
Pipeline Leak Detection System for Oil and Gas Flowlines
,”
ASME J. Manuf. Sci. Eng.
,
119
(
1
), pp.
105
109
. 10.1115/1.2836545
46.
Ahadi
,
M.
, and
Bakhtiar
,
M. S.
,
2010
, “
Leak Detection in Water-Filled Plastic Pipes Through the Application of Tuned Wavelet Transforms to Acoustic Emission Signals
,”
Appl. Acoustics
,
71
(
7
), pp.
634
639
. 10.1016/j.apacoust.2010.02.006
47.
James
,
G.
,
Carne
,
T. G.
, and
Lauffer
,
J. P.
,
1995
, “
The Natural Excitation Technique (Next) for Modal Parameter Extraction From Operating Structures
,”
Modal Anal. Int. J. Anal. Exp. Modal Anal.
,
10
(
4
), p.
260
.
48.
James
G. H.
, III
,
Carne
,
T. G.
, and
Mayes
,
R. L.
,
1995
,
Modal Parameter Extraction From Large Operating Structures Using Ambient Excitation
, Technical Report,
Sandia National Labs.
,
Albuquerque, NM
.
49.
Shen
,
F.
,
Zheng
,
M.
,
Shi
,
D. F.
, and
Xu
,
F.
,
2003
, “
Using the Cross-Correlation Technique to Extract Modal Parameters on Response-Only Data
,”
J. Sound Vib.
,
259
(
5
), pp.
1163
1179
. 10.1006/jsvi.2002.5203
50.
Kim
,
B. H.
,
Stubbs
,
N.
, and
Park
,
T.
,
2005
, “
A New Method to Extract Modal Parameters Using Output-Only Responses
,”
J. Sound Vib.
,
282
(
1–2
), pp.
215
230
. 10.1016/j.jsv.2004.02.026
You do not currently have access to this content.