Vibration absorbers are commonly used to reduce unwanted structural vibrations. In this paper, a vibration absorber composed of a sprung mass is used to enforce a location of zero displacement (or node) at a specified location on a Euler–Bernoulli beam under harmonic base excitation. Closed-form expressions for the optimal tuning of the auxiliary spring-mass system are found, and the results are presented for the cases of the attachment and node located at the same and different locations. The assumed modes method is used, so the results can be applied for arbitrary boundary conditions. To aid in the design process, this paper also characterizes the sensitivity of the displacement at the desired node location to parametric variations. Sensitivities are considered with respect to the base excitation frequency and the attachment mass, stiffness, and location. The sensitivities of the system highlight some feasible but less desirable attachment locations. Numerical and experimental results for a cantilever beam are presented to illustrate the proposed method and the effects of mistuning.

References

References
1.
Frahm
,
H.
,
1911
, “Device for Damping Vibrations of Bodies,” U.S. Patent No. 989,958.
2.
Den Hartog
,
J. P.
,
1985
,
Mechanical Vibration
,
Dover
,
New York
.
3.
Brock
,
J. E.
,
1946
, “
A Note on the Damped Vibration Absorber
,”
Trans. ASME, J. Appl. Mech.
,
13
(
4
), p.
A284
.
4.
Warburton
,
G. B.
,
1982
, “
Optimum Absorber Parameters for Various Combinations of Response and Excitation Parameters
,”
Earthquake Eng. Struct. Dyn.
,
10
(
3
), pp.
381
401
.
5.
Sun
,
J. Q.
,
Jolly
,
M. R.
, and
Norris
,
M. A.
,
1995
, “
Passive, Adaptive and Active Tuned Vibration Absorbers—A Survey
,”
ASME J. Vib. Acoust.
,
117
(
B
), pp.
234
242
.
6.
Warburton
,
G. B.
, and
Ayorinde
,
E. O.
,
1980
, “
Optimum Absorber Parameters for Simple Systems
,”
Earthquake Eng. Struct. Dyn.
,
8
(
3
), pp.
197
217
.
7.
Joshi
,
A. S.
, and
Jangid
,
R. S.
,
1997
, “
Optimum Parameters of Multiple Tuned Mass Dampers for Base-Excited Damped Systems
,”
J. Sound Vib.
,
202
(
5
), pp.
657
667
.
8.
Tsai
,
H.-C.
, and
Lin
,
G.-C.
,
1993
, “
Optimum Tuned-Mass Dampers for Minimizing Steady-State Response of Support-Excited and Damped Systems
,”
Earthquake Eng. Struct. Dyn.
,
22
(
11
), pp.
957
973
.
9.
Young
,
D.
,
1952
, “
Theory of Dynamic Vibration Absorbers for Beams
,”
Proceedings of the First U.S. National Congress of Applied Mechanics
,
Chicago, IL
,
June 11–16
, 1951, pp. 91–96.
10.
Cheung
,
Y.
, and
Wong
,
W.
,
2009
, “
H∞ and H2 Optimizations of a Dynamic Vibration Absorber for Suppressing Vibrations in Plates
,”
J. Sound Vib.
,
320
(
1–2
), pp.
29
42
.
11.
Jacquot
,
R. G.
,
1978
, “
Optimal Dynamic Vibration Absorbers for General Beam Systems
,”
J. Sound Vib.
,
60
(
4
), pp.
535
542
.
12.
Dayou
,
J.
,
2006
, “
Fixed-Points Theory for Global Vibration Control Using Vibration Neutralizer
,”
J. Sound Vib.
,
292
(
3–5
), pp.
765
776
.
13.
Cha
,
P. D.
,
2002
, “
Specifying Nodes at Multiple Locations for Any Normal Mode of a Linear Elastic Structure
,”
J. Sound Vib.
,
250
(
5
), pp.
923
934
.
14.
Cha
,
P. D.
,
2004
, “
Imposing Nodes at Arbitrary Locations for General Elastic Structures During Harmonic Excitations
,”
J. Sound Vib.
,
272
(
3–5
), pp.
853
868
.
15.
Cha
,
P. D.
,
2005
, “
Enforcing Nodes at Required Locations in a Harmonically Excited Structure Using Simple Oscillators
,”
J. Sound Vib.
,
279
(
3–5
), pp.
799
816
.
16.
Cha
,
P. D.
, and
Rinker
,
J. M.
,
2012
, “
Enforcing Nodes to Suppress Vibration Along a Harmonically Forced Damped Euler-Bernoulli Beam
,”
ASME J. Vib. Acoust.
,
134
(
5
), p.
051010
.
17.
Cha
,
P. D.
, and
Zhou
,
X.
,
2006
, “
Imposing Points of Zero Displacements and Zero Slopes Along Any Linear Structure During Harmonic Excitations
,”
J. Sound Vib.
,
297
(
1–2
), pp.
55
71
.
18.
Cha
,
P. D.
, and
Chan
,
M.
,
2009
, “
Mitigating Vibration Along an Arbitrarily Supported Elastic Structure Using Multiple Two-Degree-of-Freedom Oscillators
,”
ASME J. Vib. Acoust.
,
131
(
3
), p.
031008
.
19.
Cha
,
P. D.
, and
Ren
,
G.
,
2006
, “
Inverse Problem of Imposing Nodes to Suppress Vibration for a Structure Subjected to Multiple Harmonic Excitations
,”
J. Sound Vib.
,
290
(
1–2
), pp.
425
447
.
20.
Cha
,
P. D.
, and
Buyco
,
K.
,
2015
, “
An Efficient Method for Tuning Oscillator Parameters in Order to Impose Nodes on a Linear Structure Excited by Multiple Harmonics
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031018
.
21.
Wong
,
W. O.
,
Tang
,
S. L.
,
Cheung
,
Y. L.
, and
Cheng
,
L.
,
2007
, “
Design of a Dynamic Vibration Absorber for Vibration Isolation of Beams Under Point or Distributed Loading
,”
J. Sound Vib.
,
301
(
3–5
), pp.
898
908
.
22.
Rinker
,
J.
,
2013
, “Tuning TMDs to Fix Floors in MDOF Shear Buildings,”
Topics in Dynamics of Civil Structures
, Vol. 4,
Springer
,
New York
, pp.
55
59
.
23.
Anderson
,
P. W.
,
1958
, “
Absence of Diffusion in Certain Random Lattices
,”
Phys. Rev.
,
109
, pp.
1492
1505
.
24.
Hodges
,
C. H.
,
1982
, “
Confinement of Vibration by Structural Irregularity
,”
J. Sound Vib.
,
82
(
3
), pp.
411
424
.
25.
Ibrahim
,
R. A.
,
1987
, “
Structural Dynamics with Parameter Uncertainties
,”
ASME Appl. Mech. Rev.
,
40
(
3
), pp.
309
328
.
26.
Pierre
,
C.
,
Tang
,
D. M.
, and
Dowell
,
E. H.
,
1987
, “
Localized Vibrations of Disordered Multispan Beams – Theory and Experiment
,”
AIAA J.
,
25
(
9
), pp.
1249
1257
.
27.
Foda
,
M.
, and
Albassam
,
B.
,
2006
, “
Vibration Confinement in a General Beam Structure During Harmonic Excitations
,”
J. Sound Vib.
,
295
(
3–5
), pp.
491
517
.
28.
Pierre
,
C.
, and
Dowell
,
E. H.
,
1987
, “
Localization of Vibrations by Structural Irregularity
,”
J. Sound Vib.
,
114
(
3
), pp.
549
564
.
29.
Cha
,
P. D.
, and
Pierre
,
C.
,
1991
, “
Vibration Localization by Disorder in Assemblies of Monocoupled, Multimode Component Systems
,”
ASME J. Appl. Mech.
,
58
(
4
), pp.
1072
1081
.
You do not currently have access to this content.