Fluid–structure interaction (FSI) plays a significant role in the deformation of flapping insect wings. However, many current FSI models are high-order and rely on direct computational methods, thereby limiting parametric studies as well as insights into the physics governing wing dynamics. We develop a novel flapping wing FSI framework that accommodates general wing geometry and fluid loading. We use this framework to study the unilaterally coupled FSI of an idealized hawkmoth forewing considering two fluid models: Reynolds-averaged Navier–Stokes computational fluid dynamics (RANS CFD) and blade element theory (BET). We first compare aerodynamic modal forces estimated by the low-order BET model to those calculated via high fidelity RANS CFD. We find that for realistic flapping kinematics, BET estimates modal forces five orders of magnitude faster than CFD within reasonable accuracy. Over the range flapping kinematics considered, BET and CFD estimated modal forces vary maximally by 350% in magnitude and approximately π/2 radians in phase. The large reduction in computational time offered by BET facilitates high-dimensional parametric design of flapping-wing-based technologies. Next, we compare the contributions of aerodynamic and inertial forces to wing deformation. Under the unilateral coupling assumption, aerodynamic and inertial-elastic forces are on the same order of magnitude—however, inertial-elastic forces primarily excite the wing’s bending mode whereas aerodynamic forces primarily excite the wing’s torsional mode. This suggests that, via conscientious sensor placement and orientation, biological wings may be able to sense independently inertial and aerodynamic forces.

References

References
1.
Trimmer
,
W. S.
,
1989
, “
Microrobots and Micromechanical Systems
,”
Sens. Actuators
,
19
(
3
), pp.
267
287
.
2.
Fuller
,
S. B.
,
Karpelson
,
M.
,
Censi
,
A.
,
Ma
,
K. Y.
, and
Wood
,
R. J.
,
2014
, “
Controlling Free Flight of a Robotic Fly Using An Onboard Vision Sensor Inspired by Insect Ocelli
,”
J. R. Soc. Interface
,
11
(
97
), p.
20140281
.
3.
Wood
,
R. J.
,
2008
, “
The First Takeoff of a Biologically Inspired At-Scale Robotic Insect
,”
IEEE Trans. Robot.
,
24
(
2
), pp.
341
347
.
4.
Combes
,
S. A.
, and
Daniel
,
T. L.
,
2003
, “
Into Thin Air: Contributions of Aerodynamic and Inertial-Elastic Forces to Wing Bending in the Hawkmoth Manduca Sexta
,”
J. Exp. Biol.
,
206
(
17
), pp.
2999
3006
.
5.
Young
,
J.
,
Walker
,
S. M.
,
Bomphrey
,
R. J.
,
Taylor
,
G. K.
, and
Thomas
,
A. L.
,
2009
, “
Details of Insect Wing Design and Deformation Enhance Aerodynamic Function and Flight Efficiency
,”
Science
,
325
(
5947
), pp.
1549
1552
.
6.
Du
,
G.
, and
Sun
,
M.
,
2010
, “
Effects of Wing Deformation on Aerodynamic Forces in Hovering Hoverflies
,”
J. Exp. Biol.
,
213
(
13
), pp.
2273
2283
.
7.
Jankauski
,
M.
,
Guo
,
Z.
, and
Shen
,
I.
,
2018
, “
The Effect of Structural Deformation on Flapping Wing Energetics
,”
J. Sound. Vib.
,
429
, pp.
176
192
.
8.
Dickerson
,
B. H.
,
Aldworth
,
Z. N.
, and
Daniel
,
T. L.
,
2014
, “
Control of Moth Flight Posture is Mediated By Wing Mechanosensory Feedback
,”
J. Exp. Biol.
,
217
(
13
), pp.
2301
2308
.
9.
Fu
,
J.
,
Liu
,
X.
,
Shyy
,
W.
, and
Qiu
,
H.
,
2018
, “
Effects of Flexibility and Aspect Ratio on the Aerodynamic Performance of Flapping Wings
,”
Bioinspir. Biomim.
,
13
(
3
), p.
036001
.
10.
Dickinson
,
M. H.
, and
Tu
,
M. S.
,
1997
, “
The Function of Dipteran Flight Muscle
,”
Comp. Biochem. Physiol. A
,
116
(
3
), pp.
223
238
.
11.
Tuthill
,
J. C.
, and
Wilson
,
R. I.
,
2016
, “
Mechanosensation and Adaptive Motor Control in Insects
,”
Curr. Biol.
,
26
(
20
), p.
R1022
.
12.
Norris
,
A. G.
,
2013
, “
Experimental Characterization of the Structural Dynamics and Aero-Structural Sensitivity of a Hawkmoth Wing Toward the Development of Design Rules for Flapping-Wing Micro Air Vehicles
,” Air Force Institute of Technology, Technical Report.
13.
Fairuz
,
Z.
,
Abdullah
,
M.
,
Yusoff
,
H.
, and
Abdullah
,
M.
,
2013
, “
Fluid Structure Interaction of Unsteady Aerodynamics of Flapping Wing At Low Reynolds Number
,”
Eng. Appl. Comput. Fluid Mech.
,
7
(
1
), pp.
144
158
.
14.
Ishihara
,
D.
,
Horie
,
T.
, and
Denda
,
M.
,
2009
, “
A Two-Dimensional Computational Study on the Fluid–Structure Interaction Cause of Wing Pitch Changes in Dipteran Flapping Flight
,”
J. Exp. Biol.
,
212
(
1
), pp.
1
10
.
15.
Nakata
,
T.
, and
Liu
,
H.
,
2012
, “
Aerodynamic Performance of a Hovering Hawkmoth With Flexible Wings: A Computational Approach
,”
Proc. R. Soc. B
,
279
(
1729
), pp.
722
731
.
16.
Pfeiffer
,
A. T.
,
Lee
,
J.-S.
,
Han
,
J.-H.
, and
Baier
,
H.
,
2010
, “
Ornithopter Flight Simulation Based on Flexible Multi-Body Dynamics
,”
J. Bionic Eng.
,
7
(
1
), pp.
102
111
.
17.
Jankauski
,
M.
, and
Shen
,
I.
,
2014
, “
Dynamic Modeling of an Insect Wing Subject to Three-Dimensional Rotation
,”
Int. J. Micro Air Veh.
,
6
(
4
), pp.
231
251
.
18.
Sane
,
S. P.
, and
Dickinson
,
M. H.
,
2002
, “
The Aerodynamic Effects of Wing Rotation and a Revised Quasi-Steady Model of Flapping Flight
,”
J. Exp. Biol.
,
205
(
8
), pp.
1087
1096
.
19.
Dickinson
,
M. H.
,
Lehmann
,
F.-O.
, and
Sane
,
S. P.
,
1999
, “
Wing Rotation and the Aerodynamic Basis of Insect Flight
,”
Science
,
284
(
5422
), pp.
1954
1960
.
20.
Truong
,
Q.
,
Nguyen
,
Q.
,
Truong
,
V.
,
Park
,
H.
,
Byun
,
D.
, and
Goo
,
N.
,
2011
, “
A Modified Blade Element Theory for Estimation of Forces Generated By a Beetle-Mimicking Flapping Wing System
,”
Bioinspir. Biomim.
,
6
(
3
), p.
036008
.
21.
Berman
,
G. J.
, and
Wang
,
Z. J.
,
2007
, “
Energy-Minimizing Kinematics in Hovering Insect Flight
,”
J. Fluid Mech.
,
582
, pp.
153
168
.
22.
Jankauski
,
M.
,
Daniel
,
T.
, and
Shen
,
I.
,
2017
, “
Asymmetries in Wing Inertial and Aerodynamic Torques Contribute to Steering in Flying Insects
,”
Bioinspir. Biomim.
,
12
(
4
), p.
046001
.
23.
Whitney
,
J. P.
, and
Wood
,
R. J.
,
2010
, “
Aeromechanics of Passive Rotation in Flapping Flight
,”
J. Fluid Mech.
,
660
, pp.
197
220
.
24.
Wang
,
Q.
,
Goosen
,
J.
, and
van Keulen
,
F.
,
2017
, “
An Efficient Fluid–Structure Interaction Model for Optimizing Twistable Flapping Wings
,”
J. Fluids Struct.
,
73
, pp.
82
99
.
25.
Stanford
,
B.
,
Kurdi
,
M.
,
Beran
,
P.
, and
McClung
,
A.
,
2012
, “
Shape, Structure, and Kinematic Parameterization of a Power-Optimal Hovering Wing
,”
J. Aircraft
,
49
(
6
), pp.
1687
1699
.
26.
Suzuki
,
T.
, and
Mahfuz
,
H.
,
2018
, “
Analysis of Large-Scale Ocean Current Turbine Blades Using Fluid–Structure Interaction and Blade Element Momentum Theory
,”
Ships Offshore Struct.
,
13
(
5
), pp.
451
458
.
27.
Johnson
,
W.
,
2013
,
Rotorcraft Aeromechanics
, Vol. 36,
Cambridge University Press
,
Cambridge
.
28.
Norlin
,
J.
, and
Järpner
,
C.
,
2012
, “
Fluid Structure Interaction on Wind Turbine Blades
,” Ph.D. thesis, Master’s thesis in Solid and Structural Mechanics and Fluid Dynamics, Chalmers University of Technology, Gothenburg, Sweden.
29.
Bottasso
,
C. L.
,
Bortolotti
,
P.
,
Croce
,
A.
, and
Gualdoni
,
F.
,
2016
, “
Integrated Aero-Structural Optimization of Wind Turbines
,”
Multibody Syst. Dyn.
,
38
(
4
), pp.
317
344
.
30.
Chin
,
D. D.
, and
Lentink
,
D.
,
2016
, “
Flapping Wing Aerodynamics: From Insects to Vertebrates
,”
J. Exp. Biol.
,
219
(
7
), pp.
920
932
.
31.
Shyy
,
W.
,
Aono
,
H.
,
Chimakurthi
,
S. K.
,
Trizila
,
P.
,
Kang
,
C.-K.
,
Cesnik
,
C. E.
, and
Liu
,
H.
,
2010
, “
Recent Progress in Flapping Wing Aerodynamics and Aeroelasticity
,”
Prog. Aerospace Sci.
,
46
(
7
), pp.
284
327
.
32.
Sedov
,
L. I.
,
Chu
,
C.
,
Cohen
,
H.
,
Seckler
,
B.
, and
Gillis
,
J.
,
1965
, “
Two-Dimensional Problems in Hydrodynamics and Aerodynamics
,”
Phys. Today
,
18
(
12
), pp.
62
63
.
33.
Zikanov
,
O.
,
2010
,
Essential Computational Fluid Dynamics
,
John Wiley & Sons
,
New York
.
34.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
30th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 6–9
, p. 439.
35.
Wilcox
,
D.
,
2002
,
Turbulence Modeling for CFD
,
2nd ed.
,
DCW Industries
,
Anaheim, CA
.
36.
Hadzic
,
H.
,
2006
, “
Development and Application of Finite Volume Method for the Computation of Flows Around Moving Bodies on Unstructured, Overlapping Grids
,” Ph.D. thesis, Technische Universität Hamburg, Hamburg.
37.
Combes
,
S.
, and
Daniel
,
T.
,
2003
, “
Flexural Stiffness in Insect Wings. II. Spatial Distribution and Dynamic Wing Bending
,”
J. Exp. Biol.
,
206
(
17
), pp.
2989
2997
.
38.
Sims
,
T. W.
,
Palazotto
,
A. N.
, and
Norris
,
A.
,
2010
, “
A Structural Dynamic Analysis of a Manduca Sexta Forewing
,”
Int. J. Micro Air Veh.
,
2
(
3
), pp.
119
140
.
39.
Willmott
,
A. P.
, and
Ellington
,
C. P.
,
1997
, “
The Mechanics of Flight in the Hawkmoth Manduca Sexta. I. Kinematics of Hovering and Forward Flight
,”
J. Exp. Biol.
,
200
(
21
), pp.
2705
2722
.
40.
Platzer
,
M.
, and
Jones
,
K.
,
2006
, “
Steady and Unsteady Aerodynamics
,”
Flow Phenomena in Nature
, Vol. 4, WIT Transactions on State-of-the-Art in Science and Engineering, WIT Press, Southampton, UK, pp.
531
541
.
41.
Nakata
,
T.
,
Liu
,
H.
, and
Bomphrey
,
R. J.
,
2015
, “
A CFD-Informed Quasi-Steady Model of Flapping-Wing Aerodynamics
,”
J. Fluid Mech.
,
783
, pp.
323
343
.
42.
Pohly
,
J.
,
Salmon
,
J.
,
Bluman
,
J.
,
Nedunchezian
,
K.
, and
Kang
,
C.-K.
,
2018
, “
Quasi-Steady Versus Navier–Stokes Solutions of Flapping Wing Aerodynamics
,”
Fluids
,
3
(
4
), p.
81
.
43.
Hedrick
,
T. L.
, and
Daniel
,
T.
,
2006
, “
Flight Control in the Hawkmoth Manduca Sexta: The Inverse Problem of Hovering
,”
J. Exp. Biol.
,
209
(
16
), pp.
3114
3130
.
44.
Alexandra Yarger
,
J. F.
,
2016
, “
Dipteran Halteres: Perspectives on Function and Integration for a Unique Sensory Organ
,”
Integr. Comp. Biol.
,
56
(
5
), pp.
865
876
.
45.
Nakata
,
T.
, and
Liu
,
H.
,
2011
, “
Aerodynamic Performance of a Hovering Hawkmoth With Flexible Wings: A Computational Approach
,”
Proc. R. Soc. B: Biol. Sci.
,
279
(
1729
), pp.
722
731
.
You do not currently have access to this content.