Dielectric elastomer (DE) membrane transducers are well known for exhibiting large deformations when subject to high voltage. Furthermore, DEs are characterized by an actuation bandwidth of several kilohertz, which allows their use in high-frequency applications, e.g., acoustic ones. The frequency response of DE membranes depends on many parameters such as geometry, pre-stress, and electrode pattern. By properly designing such parameters, it is possible to control vibration modes and resonance frequencies of the membrane, opening up a number of application scenarios. Motivated by this fact, this work presents the first experimental study of continuous vibrations generated in DE membranes via high-voltage excitation. The system under investigation consists of a squared DE membrane with a circular electrode, preloaded out of plane with a linear spring. Vibrations are generated by applying a broadband high-voltage signal to the DE membrane. A 3D laser vibrometer is used to reconstruct the three-dimensional oscillations of scanning points on the membrane surface. Experimental investigations are performed to study the effects of DE geometry and pre-stress on the membrane motion, in terms of resulting frequency spectrum and vibration modes.

References

1.
York
,
A.
,
Dunn
,
J.
, and
Seelecke
,
S.
,
2013
, “
Systematic Approach to Development of Pressure Sensors Using Dielectric Electro-Active Polymer Membranes
,”
Smart Mater. Struct.
,
22
(
9
), p.
094015
.
2.
Pelrine
,
R.
,
Kornbluh
,
R. D.
,
Pei
,
Q.
, and
Eckerle
,
J.
,
2004
, “
Electroactive Polymer Sensors
,” U.S. Patent No. US6809462B2
3.
Moretti
,
G.
,
Fontana
,
M.
, and
Vertechy
,
R.
,
2015
, “
Model-Based Design and Optimization of a Dielectric Elastomer Power Take-Off for Oscillating Wave Surge Energy Converters
,”
Meccanica
,
50
(
11
), pp.
2797
2813
.
4.
Zanini
,
P.
,
Rossiter
,
J.
, and
Homer
,
M.
,
2015
, “
Modelling the Effect of Actuator-Like Behavior in Dielectric Elastomer Generators
,”
Appl. Phys. Lett.
,
107
(
15
), p.
153906
.
5.
Pelrine
,
R.
,
Kornbluh
,
R. D.
,
Eckerle
,
J.
,
Jeuck
,
P.
,
Oh
,
S.
, and
Pei
,
Q.
,
2001
, “
Dielectric Elastomers: Generator Mode Fundamentals and Applications
,”
Proc. SPIE Smart Struct. Mater. Electroact. Polym. Actuators Devices
,
4329
, pp.
148
157
.
6.
Jhong
,
Y.-Y.
,
Huang
,
C.-M.
,
Hsieh
,
C.-C.
, and
Fu
,
C.-C.
,
2007
, “
Improvement of Viscoelastic Effects of Dielectric Elastomer Actuator and Its Application for Valve Devices
,”
Proc. SPIE Smart Struct. Mater. Electroact. Polym. Actuators Devices
,
6524
, p.
65241Y
.
7.
Giousouf
,
M.
, and
Kovacs
,
G.
,
2013
, “
Dielectric Elastomer Actuators Used for Pneumatic Valve Technology
,”
Smart Mater. Struct.
,
22
(
10
), p.
104010
.
8.
Goulbourne
,
N. C.
,
Frecker
,
M. I.
,
Mockensturm
,
E.
, and
Snyder
,
A. J.
,
2004
, “
Electro-Elastic Modeling of a Dielectric Elastomer Diaphragm for a Prosthetic Blood Pump
,”
Proc. SPIE Smart Struct. Mater. Electroact. Polym. Actuators Devices
,
5385
, pp.
122
134
.
9.
Carpi
,
F.
,
Menon
,
C.
, and
De Rossi
,
D.
,
2010
, “
Electroactive Elastomeric Actuator for All-Polymer Linear Peristaltic Pumps
,”
IEEE/ASME Trans. Mechatronics
,
15
(
3
), pp.
460
470
.
10.
Loverich
,
J. J.
,
Kanno
,
I.
, and
Kotera
,
H.
,
2006
, “
Concepts for a New Class of All-Polymer Micropumps
,”
Lab Chip
,
6
(
9
), pp.
1147
1154
.
11.
Simone
,
F.
,
Linnebach
,
P.
,
Rizzello
,
G.
, and
Seelecke
,
S.
,
2018
, “
A Finite Element Model of Rigid Body Structures Actuated by Dielectric Elastomer Actuators
,”
Smart Mater. Struct.
,
27
(
6
), p.
065001
.
12.
Hodgins
,
M.
,
York
,
A.
, and
Seelecke
,
S.
,
2013
, “
Experimental Comparison of Bias Elements for Out-of-Plane DEAP Actuator System
,”
Smart Mater. Struct.
,
22
(
9
), p.
094016
.
13.
Loew
,
P.
,
Rizzello
,
G.
, and
Seelecke
,
S.
,
2018
, “
A Novel Biasing Mechanism for Circular Out-of-Plane Dielectric Actuators Based on Permanent Magnets
,”
Mechatronics
,
56
, pp.
48
57
.
14.
Hau
,
S.
,
York
,
A.
, and
Seelecke
,
S.
,
2018
, “
Performance Prediction and Scaling Laws of Circular Dielectric Elastomer Membrane Actuators
,”
ASME J. Mech. Des.
,
140
(
11
), p.
113501
.
15.
Fasolt
,
B.
,
Hodgins
,
M.
,
Rizzello
,
G.
, and
Seelecke
,
S.
,
2017
, “
Effect of Screen Printing Parameters on Sensor and Actuator Performance of Dielectric Elastomer (DE) Membranes
,”
Sensors Actuat. A Phys.
,
265
, pp.
10
19
.
16.
Heydt
,
R.
,
Kornbluh
,
R.
,
Pelrine
,
R.
, and
Mason
,
V.
,
1998
, “
Design and Performance of an Electrostrictive-Polymer-Film Acoustic Actuator
,”
J. Sound Vib.
,
215
(
2
), pp.
297
311
.
17.
Heydt
,
R.
,
Pelrine
,
R.
,
Joseph
,
J.
,
Eckerle
,
J.
, and
Kornbluh
,
R.
,
2000
, “
Acoustical Performance of an Electrostrictive Polymer Film Loudspeaker
,”
J. Acoust. Soc. Am.
,
107
(
2
), pp.
833
839
.
18.
Fox
,
J. W.
, and
Goulbourne
,
N. C.
,
2009
, “
Electric Field-Induced Surface Transformations and Experimental Dynamic Characteristics of Dielectric Elastomer Membranes
,”
J. Mech. Phys. Solids
,
57
(
8
), pp.
1417
1435
.
19.
Hodgins
,
M.
,
Rizzello
,
G.
,
Naso
,
D.
,
York
,
A.
, and
Seelecke
,
S.
,
2014
, “
An Electro-Mechanically Coupled Model for the Dynamic Behavior of a Dielectric Electro-Active Polymer Actuator
,”
Smart Mater. Struct.
,
23
(
10
), p.
104006
.
20.
Nalbach
,
S.
,
Rizzello
,
G.
, and
Seelecke
,
S.
,
2017
, “
Continuum Vibration Analysis of Dielectric Elastomer Membranes
,”
Proc. SPIE Smart Struct. Mater. Electroact. Polym. Actuators Devices
,
10163
, p.
101632A
.
21.
McCoul
,
D.
,
Rosset
,
S.
,
Besse
,
N.
, and
Shea
,
H.
,
2017
, “
Multifunctional Shape Memory Electrodes for Dielectric Elastomer Actuators Enabling High Holding Force and Low-Voltage Multisegment Addressing
,”
Smart Mater. Struct.
,
26
(
2
), p.
025015
.
22.
He
,
T.
,
Zhao
,
X.
, and
Suo
,
Z.
,
2009
, “
Dielectric Elastomer Membranes Undergoing Inhomogeneous Deformation
,”
J. Appl. Phys.
,
106
(
8
), p.
083522
.
23.
Hill
,
M.
,
Rizzello
,
G.
, and
Seelecke
,
S.
,
2017
, “
Development and Experimental Characterization of a Pneumatic Valve Actuated by a Dielectric Elastomer Membrane
,”
Smart Mater. Struct.
,
26
(
8
), p.
085023
.
24.
Khanh
,
V. T. V.
,
Mathew
,
A. T.
, and
Koh
,
S. J. A.
,
2017
, “
Stackable Configurations of Artificial Muscle Modules That Is Continuously-Tunable by Voltage
,”
Proc. SPIE Smart Struct. Mater. Electroact. Polym. Actuators Devices
,
10163
, p.
101632K
.
25.
Fantuzzi
,
N.
,
Tornabene
,
F.
, and
Viola
,
E.
,
2014
, “
Generalized Differential Quadrature Finite Element Method for Vibration Analysis of Arbitrarily Shaped Membranes
,”
Int. J. Mech. Sci.
,
79
, pp.
216
251
.
You do not currently have access to this content.