This paper addresses the optimal design of a novel nontraditional inerter-based dynamic vibration absorber (NTIDVA) installed on an undamped primary system of single degree-of-freedom under harmonic and transient excitations. Our NTIDVA is based on the traditional dynamic vibration absorber (TDVA) with the damper replaced by a grounded inerter-based mechanical network. Closed-form expressions of optimal parameters of NTIDVA are derived according to an extended version of fixed point theory developed in the literature and the stability maximization criterion. The transient response of the primary system is optimized when the coupled system becomes defective, namely having three pairs of coalesced conjugate poles, the proof of which is also spelt out in this paper. Moreover, the analogous relationship between NTIDVA and electromagnetic dynamic vibration absorber is highlighted, facilitating the practical implementation of the proposed absorber. Finally, numerical studies suggest that compared with TDVA, NTIDVA can decrease the peak vibration amplitude of the primary system and enlarge the frequency bandwidth of vibration suppression when optimized by the extended fixed point technique, while the stability maximization criterion shows an improved transient response in terms of larger modal damping ratio and accelerated attenuation rate.

References

References
1.
Warburton
,
G. B.
,
1982
, “
Optimum Absorber Parameters for Various Combinations of Response and Excitation Parameters
,”
Earthquake Eng. Struct. Dyn.
,
10
(
3
), pp.
381
401
.
2.
Stewart
,
G.
, and
Lackner
,
M.
,
2013
, “
Offshore Wind Turbine Load Reduction Employing Optimal Passive Tuned Mass Damping Systems
,”
IEEE Trans. Control Syst. Technol.
,
21
(
4
), pp.
1090
1104
.
3.
Salvi
,
J.
,
Rizzi
,
E.
,
Rustighi
,
E.
, and
Ferguson
,
N. S.
,
2018
, “
Optimum Tuning of Passive Tuned Mass Dampers for the Mitigation of Pulse-Like Responses
,”
ASME J. Vib. Acoust.
,
140
(
6
), p.
061014
.
4.
Den Hartog
,
J.
,
1956
,
Mechanical Vibrations
,
4th
ed.,
McGraw-Hill
,
New York
.
5.
Yamaguchi
,
H.
,
1988
, “
Damping of Transient Vibration by a Dynamic Absorber
,”
Trans. Japan Soc. Mech. Eng. Ser. C
,
54
(
499
), pp.
561
568
.
6.
Nishihara
,
O.
, and
Matsuhisa
,
H.
,
1996
, “
Design Optimization of Passive Gyroscopic Damper: Stability Degree Maximization
,”
Nippon Kikai Gakkai Ronbunshu, C Hen/Trans. Japan Soc. Mech. Eng. C
,
62
(
600
), pp.
3090
3098
.
7.
Luongo
,
A.
,
1995
, “
Free Vibrations and Sensitivity Analysis of a Defective Two Degree-of-freedom System
,”
AIAA J.
,
33
(
1
), pp.
120
127
.
8.
Bisegna
,
P.
, and
Caruso
,
G.
,
2012
, “
Closed-Form Formulas for the Optimal Pole-Based Design of Tuned Mass Dampers
,”
J. Sound Vib.
,
331
(
10
), pp.
2291
2314
.
9.
Abe
,
M.
, and
Fujino
,
Y.
,
1994
, “
Dynamic Characterization of Multiple Tuned Mass Dampers and Some Design Formulas
,”
Earthquake Eng. Struct. Dyn.
,
23
(
8
), pp.
813
835
.
10.
Zuo
,
L.
,
2009
, “
Effective and Robust Vibration Control Using Series Multiple Tuned-Mass Dampers
,”
ASME J. Vib. Acoust.
,
131
(
3
), p.
031003
.
11.
Asami
,
T.
,
Mizukawa
,
Y.
, and
Ise
,
T.
,
2018
, “
Optimal Design of Double-Mass Dynamic Vibration Absorbers Minimizing the Mobility Transfer Function
,”
ASME J. Vib. Acoust.
,
140
(
6
), p.
061012
.
12.
Fulcher
,
B. A.
,
Shahan
,
D. W.
,
Haberman
,
M. R.
,
Seepersad
,
C. C.
, and
Wilson
,
P. S.
,
2014
, “
Analytical and Experimental Investigation of Buckled Beams as Negative Stiffness Elements for Passive Vibration and Shock Isolation Systems
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031009
.
13.
Inamoto
,
K.
, and
Ishida
,
S.
,
2019
, “
Improved Feasible Load Range and Its Effect on the Frequency Response of Origami-Inspired Vibration Isolators With Quasi-Zero-Stiffness Characteristics
,”
ASME J. Vib. Acoust.
,
141
(
2
), p.
021004
.
14.
Zhou
,
S.
,
Jean-Mistral
,
C.
, and
Chesne
,
S.
,
2019
, “
Closed-Form Solutions to Optimal Parameters of Dynamic Vibration Absorbers With Negative Stiffness Under Harmonic and Transient Excitation
,”
Int. J. Mech. Sci.
,
157–158
, pp.
528
541
.
15.
Jenkins
,
R.
, and
Olgac
,
N.
,
2018
, “
Real-Time Tuning of Delayed Resonator-Based Absorbers for Spectral and Spatial Variations
,”
ASME J. Vib. Acoust.
,
141
(
2
), p.
021011
.
16.
Rasid
,
S. M. R.
,
Mizuno
,
T.
,
Ishino
,
Y.
,
Takasaki
,
M.
,
Hara
,
M.
, and
Yamaguchi
,
D.
,
2019
, “
Design and Control of Active Vibration Isolation System With an Active Dynamic Vibration Absorber Operating as Accelerometer
,”
J. Sound Vib.
,
438
, pp.
175
190
.
17.
Chesne
,
S.
,
Inquiete
,
G.
,
Cranga
,
P.
,
Legrand
,
F.
, and
Petitjean
,
B.
,
2019
, “
Innovative Hybrid Mass Damper for Dual-Loop Controller
,”
Mech. Syst. Signal Process.
,
115
, pp.
514
523
.
18.
Matta
,
E.
, and
De Stefano
,
A.
,
2009
, “
Robust Design of Mass-Uncertain Rolling-Pendulum TMDs for the Seismic Protection of Buildings
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
127
147
.
19.
De Angelis
,
M.
,
Perno
,
S.
, and
Reggio
,
A.
,
2012
, “
Dynamic Response and Optimal Design of Structures With Large Mass Ratio TMD
,”
Earthquake Eng. Struct. Dyn.
,
41
(
1
), pp.
41
60
.
20.
Reggio
,
A.
, and
De Angelis
,
M.
,
2015
, “
Optimal Energy-Based Seismic Design of Non-Conventional Tuned Mass Damper (TMD) Implemented Via Inter-Story Isolation
,”
Earthquake Eng. Struct. Dyn.
,
44
(
10
), pp.
1623
1642
.
21.
Smith
,
M. C.
,
2002
, “
Synthesis of Mechanical Networks: The Inerter
,”
IEEE Trans. Autom. Control
,
47
(
10
), pp.
1648
1662
.
22.
Lazar
,
I. F.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2014
, “
Using an Inerter-Based Device for Structural Vibration Suppression
,”
Earthquake Eng. Struct. Dyn.
,
43
(
8
), pp.
1129
1147
.
23.
Lazar
,
I. F.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2016
, “
Vibration Suppression of Cables Using Tuned Inerter Dampers
,”
Eng. Struct.
,
122
, pp.
62
71
.
24.
Marian
,
L.
, and
Giaralis
,
A.
,
2015
, “
Optimal Design of a Novel Tuned Mass-Damper-Inerter (TMDI) Passive Vibration Control Configuration for Stochastically Support-Excited Structural Systems
,”
Probabilistic Eng. Mech.
,
38
, pp.
156
164
.
25.
Marian
,
L.
, and
Giaralis
,
A.
,
2017
, “
The Tuned Mass-Damper-Inerter for Harmonic Vibrations Suppression, Attached Mass Reduction, and Energy Harvesting
,”
Smart Struct. Syst.
,
19
(
6
), pp.
665
678
.
26.
Pietrosanti
,
D.
,
De Angelis
,
M.
, and
Basili
,
M.
,
2017
, “
Optimal Design and Performance Evaluation of Systems With Tuned Mass Damper Inerter (TMDI)
,”
Earthquake Eng. Struct. Dyn.
,
46
(
8
), pp.
1367
1388
.
27.
Javidialesaadi
,
A.
, and
Wierschem
,
N. E.
,
2018
, “
Three-Element Vibration Absorber-Inerter for Passive Control of Single-Degree-of-Freedom Structures
,”
ASME J. Vib. Acoust.
,
140
(
6
), p.
061007
.
28.
Wang
,
X.
,
Liu
,
X.
,
Shan
,
Y.
,
Shen
,
Y.
, and
He
,
T.
,
2018
, “
Analysis and Optimization of the Novel Inerter-Based Dynamic Vibration Absorbers
,”
IEEE Access
,
6
, pp.
33169
33182
.
29.
Hu
,
Y.
, and
Chen
,
M. Z. Q.
,
2015
, “
Performance Evaluation for Inerter-Based Dynamic Vibration Absorbers
,”
Int. J. Mech. Sci.
,
99
, pp.
297
307
.
30.
Garrido
,
H.
,
Curadelli
,
O.
, and
Ambrosini
,
D.
,
2013
, “
Improvement of Tuned Mass Damper by Using Rotational Inertia Through Tuned Viscous Mass Damper
,”
Eng. Struct.
,
56
, pp.
2149
2153
.
31.
Shen
,
Y.
,
Chen
,
L.
,
Yang
,
X.
,
Shi
,
D.
, and
Yang
,
J.
,
2016
, “
Improved Design of Dynamic Vibration Absorber by Using the Inerter and Its Application in Vehicle Suspension
,”
J. Sound Vib.
,
361
, pp.
148
158
.
32.
Jin
,
X.
,
Chen
,
M. Q.
, and
Huang
,
Z.
,
2019
, “
Suppressing Random Response of a Regular Structure by an Inerter-Based Dynamic Vibration Absorber
,”
ASME J. Vib. Acoust.
,
141
(
4
), p.
041004
.
33.
Barredo
,
E.
,
Blanco
,
A.
,
Abúndez
,
A.
,
Vela
,
L. G.
,
Meza
,
V.
,
Cruz
,
R. H.
, and
Mayén
,
J.
,
2018
, “
Closed-Form Solutions for the Optimal Design of Inerter-Based Dynamic Vibration Absorbers
,”
Int. J. Mech. Sci.
,
144
, pp.
41
53
.
34.
Basili
,
M.
,
De Angelis
,
M.
, and
Pietrosanti
,
D.
,
2018
, “
Modal Analysis and Dynamic Response of a Two Adjacent Single Degree of Freedom Systems Linked by Spring-Dashpot-Inerter Elements
,”
Eng. Struct.
,
174
, pp.
736
752
.
35.
Basili
,
M.
,
De Angelis
,
M.
, and
Pietrosanti
,
D.
,
2019
, “
Defective Two Adjacent Single Degree of Freedom Systems Linked by Spring-Dashpot-Inerter for Vibration Control
,”
Eng. Struct.
,
188
, pp.
480
492
.
36.
Ren
,
M. Z.
,
2001
, “
A Variant Design of the Dynamic Vibration Absorber
,”
J. Sound Vib.
,
245
(
4
), pp.
762
770
.
37.
Krenk
,
S.
,
2005
, “
Frequency Analysis of the Tuned Mass Damper
,”
ASME J. Appl. Mech.
,
72
(
6
), pp.
936
942
.
38.
Zhou
,
S.
,
Jean-Mistral
,
C.
, and
Chesne
,
S.
,
2019
, “
Electromagnetic Shunt Damping With Negative Impedances: Optimization and Analysis
,”
J. Sound Vib.
,
445
, pp.
188
203
.
This content is only available via PDF.
You do not currently have access to this content.