Vibrotactile feedback may be able to compensate for the loss of sensory input in lower-limb prosthesis users to improve the mobility function. Designing an effective vibrotactile feedback system requires that users are able to perceive and respond to vibrotactile stimuli correctly and in a timely manner. Our study explored four key tactor configuration variables (i.e., tactors’ prosthetic layer, vibration intensity, prosthetic pressure, and spacing between adjacent tactors) through two experiments. The vibration propagation experiment investigated the effects of tactor configurations on vibration amplitude at the prosthesis–limb interface. Results revealed a positive relationship between vibration amplitude and intensity and a weak relationship between vibration amplitude and prosthetic pressure. Highest vibration amplitudes were observed when the tactor was located on the inner socket layer. The second experiment involving a sample of ten able-bodied and three amputee subjects investigated the effects of tactor configurations on user perception measured by response time, accuracy identifying tactors’ stimulation patterns, and spatial error in locating the tactors. Results showed that placing the tactors on the inner socket layer, greater spacing between adjacent tactors, and higher vibration intensity resulted in better user perception. The above findings can be directly applied to the design of vibrotactile feedback systems to increase the user response accuracy and decrease the response time required for dynamic tasks such as gait. They can also help to inform future clinical trials informing the optimization of tactor configuration variables.

References

1.
Hayward
,
V.
,
Astley
,
O. R.
,
Cruz-Hernandez
,
M.
,
Grant
,
D.
, and
Robles-De-La-Torre
,
G.
,
2004
, “
Haptic Interfaces and Devices
,”
Sensor Rev.
,
24
(
1
), pp.
16
29
.
2.
Shull
,
P. B.
, and
Damian
,
D. D.
,
2015
, “
Haptic Wearables as Sensory Replacement, Sensory Augmentation and Trainer—A Review
,”
J. Neuroeng. Rehabil.
,
12
(
59
), pp.
1
13
.
3.
Giggins
,
O. M.
,
Persson
,
U. M.
, and
Caulfield
,
B.
,
2013
, “
Biofeedback in Rehabilitation
,”
J. Neuroeng. Rehabil.
,
10
(
60
), pp.
1
11
.
4.
Kaczmarek
,
K. A.
,
Webster
,
J. G.
,
Bach-y-Rita
,
P.
, and
Tompkins
,
W. J.
,
1991
, “
Electroctactile and Vibrotactile Displays for Sensory Substitution Systems
,”
IEEE Trans. Biomed. Eng.
,
38
(
1
), pp.
1
16
.
5.
Plauche
,
A.
,
Villarreal
,
D.
, and
Gregg
,
R. D.
,
2016
, “
A Haptic Feedback System for Phase-Based Sensory Restoration in Above-Knee Prosthetic Leg Users
,”
IEEE Trans. Haptics
,
9
(
3
), pp.
421
426
.
6.
Crea
,
S.
,
Vitiello
,
N.
,
De Rossi
,
S. M.
,
Lenzi
,
T.
,
Donati
,
M.
,
Cipriani
,
C.
,
Carrozza
,
M. C.
, and
Pons
,
J. L.
,
Torricelli
,
D.
, &
Pajaro
,
M.
(Eds.),
2013
,
Converging Clinical and Engineering Research on Neurorehabilitation
, Vol.
1
,
Springer-Verlag
,
Berlin, Germany
, pp.
321
325
.
7.
Crea
,
S.
,
Cipriani
,
C.
,
Donati
,
M.
,
Carrozza
,
M. C.
, and
Vitiello
,
N.
,
2015
, “
Providing Time-Discrete Gait Information by Wearable Feedback Apparatus for Lower-Limb Amputees: Usability and Functional Validation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
2
), pp.
250
257
.
8.
Crea
,
S.
,
Edin
,
B. B.
,
Knaepen
,
K.
,
Meeusen
,
R.
, and
Vitiello
,
N.
,
2017
, “
Time-Discrete Vibrotactile Feedback Contributes to Improved Gait Symmetry in Patients With Lower Limb Amputations: Case Series
,”
Phys. Ther.
,
97
(
2
), pp.
198
207
.
9.
Rusaw
,
D.
,
Hagberg
,
K.
,
Nolan
,
L.
, and
Ramstrand
,
N.
,
2012
, “
Can Vibratory Feedback Be Used to Improve Postural Stability in Persons With Transtibial Limb Loss?
,”
J. Rehabil. Res. Dev.
,
49
(
8
), pp.
1239
1254
.
10.
Wan
,
A. H.
,
Wong
,
D. W.
,
Ma
,
C. Z.
,
Zhang
,
M.
, and
Lee
,
W. C.
,
2016
, “
Wearable Vibrotactile Biofeedback Device Allowing Identification of Different Floor Conditions for Lower-Limb Amputees
,”
Arch. Phys. Med. Rehabil.
,
97
(
7
), pp.
1210
1213
.
11.
Chen
,
B.
,
Feng
,
Y.
, and
Wang
,
Q.
,
2016
, “
Combining Vibrotactile Feedback With Volitional Myoelectric Control for Robotic Transtibial Prostheses
,”
Front. Neurorobotics
,
10
(
8
), pp.
1
14
.
12.
Marayong
,
P.
,
Khoo
,
I.
,
Nguyen
,
K.
,
Bharti
,
N.
,
Ruhe
,
B.
,
Craig
,
D.
, and
Wu
,
W.
,
2014
, “
Vibrotactile Device for Rehabilitative Training of Persons With Lower-Limb Amputation
,”
2014 IEEE Healthcare Innovation Conference
,
Seattle, WA
,
Oct. 8–10
.
13.
Sharma
,
A.
,
Torres-Moreno
,
R.
,
Zabjek
,
K.
, and
Andrysek
,
J.
,
2014
, “
Toward an Artificial Sensory Feedback System for Prosthetic Mobility Rehabilitation: Examination of Sensorimotor Responses
,”
J. Rehabil. Res. Dev.
,
51
(
6
), pp.
907
918
.
14.
Wentink
,
E. C.
,
Mulder
,
A.
,
Rietman
,
J. S.
, and
Veltink
,
P. H.
,
2011
, “
Vibrotactile Stimulation of the Upper Leg: Effects of Location, Stimulation Method and Habituation
,”
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Boston, MA
,
Aug. 30 – Sept. 3
.
15.
Sharma
,
A.
,
Leineweber
,
M. J.
, and
Andrysek
,
J.
,
2015
, “
The Effects of Cognitive Load and Prosthetic Liner on Volitional Response Times to Vibrotactile Feedback
,”
J. Rehabil. Res. Dev.
,
53
(
4
), pp.
473
482
.
16.
Häggström
,
E.
,
Hagberg
,
K.
,
Rydevik
,
B.
, and
Brånemark
,
R.
,
2013
, “
Vibrotactile Evaluation: Osseointegrated Versus Socket-Suspended Transfemoral Prostheses
,”
J. Rehabil. Res. Dev.
,
50
(
10
), pp.
1423
1434
.
17.
Jacobs
,
R.
,
Branemark
,
R.
,
Olmarker
,
K.
,
Rydevik
,
B.
,
Van Steenberghe
,
D.
, and
Branemark
,
P. I.
,
2000
, “
Evaluation of the Psychophysical Detection Threshold Level for Vibrotactile and Pressure Stimulation of Prosthetic Limbs Using Bone Anchorage or Soft Tissue Support
,”
Prosthet. Orthot. Int.
,
24
(
2
), pp.
133
142
.
18.
Cohen
,
J.
,
Niwa
,
M.
,
Lindeman
,
R. W.
,
Noma
,
H.
,
Yanagida
,
Y.
, and
Hosaka
,
K.
,
2005
, “
A Closed-Loop Tactor Frequency Control System for Vibrotactile Feedback
,”
CHI ’05: Extended Abstracts Human Factors in Computing Systems
,
Portland, OR
,
Apr. 2–7
.
19.
Noma
,
H.
,
Hashida
,
Y.
,
Susami
,
K.
,
Hosaka
,
K.
,
Yanagida
,
Y.
,
Lindeman
,
R. W.
, and
Kume
,
Y.
,
2006
, “
A Study of Mounting Methods for Tactors Using an Elastic Polymer
,”
2006 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
,
Alexandria, VA
,
Mar. 25–26
.
20.
Niwa
,
M.
,
Noma
,
H.
,
Yanagida
,
Y.
,
Hosaka
,
K.
, and
Lindeman
,
R. W.
,
2006
, “
Controlling the Perceived Vibrational Frequency and Amplitude of a Voice-Coil-Type Tactor
,”
2006 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
,
Alexandria, VA
,
Mar. 25–26
.
21.
Leineweber
,
M. J.
,
Shi
,
S.
, and
Andrysek
,
J.
,
2016
, “
A Method for Evaluating Timeliness and Accuracy of Volitional Motor Responses to Vibrotactile Stimuli
,”
J. Visualized Exp.
,
114
, pp.
1
7
.
22.
Antfolk
,
C.
,
D’Alonzo
,
M.
,
Controzzi
,
M.
,
Lundborg
,
G.
,
Rosen
,
B.
,
Sebelius
,
F.
, and
Cipriani
,
C.
,
2013
, “
Artificial Redirection of Sensation From Prosthetic Fingers to the Phantom Hand Map on Transradial Amputees: Vibrotactile Versus Mechanotactile Sensory Feedback
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
21
(
1
), pp.
112
120
.
23.
Sears
,
H.
,
Iversen
,
E.
,
Archer
,
S.
,
Linder
,
J.
, and
Hays
,
K.
,
2008
, “
Grip Force Feedback in an Electric Hand—Preliminary Results
,”
Proceedings of the 2008 MyoElectric Controls/Powered Prosthetics Symposium
,
Fredericton, NB
,
Aug. 13–15
.
24.
Klute
,
G. K.
,
Glaister
,
B. C.
, and
Berge
,
J. S.
,
2010
, “
Prosthetic Liners for Lower Limb Amputees: A Review of the Literature
,”
Prosthet. Orthot. Int.
,
34
(
2
), pp.
146
153
.
25.
Agur
,
A. M. R.
, and
Dalley
,
A. F.
,
2009
,
Grant’s Atlas of Anatomy
,
Wolters Kluwer
,
Philadelphia, PA
.
26.
Polliack
,
A. A.
,
Sieh
,
R. C.
,
Craig
,
D. D.
,
Landsberger
,
S.
,
McNeil
,
D. R.
, and
Ayyappa
,
E.
,
2000
, “
Scientific Validation of Two Commercial Pressure Sensor Systems for Prosthetic Socket Fit
,”
Prosthet. Orthot. Int.
,
24
(
1
), pp.
63
73
.
27.
Lacroix
,
D.
, and
Patino
,
J. F.
,
2011
, “
Finite Element Analysis of Donning Procedure of a Prosthetic Transfemoral Socket
,”
Ann. Biomed. Eng.
,
39
(
12
), pp.
2972
2983
.
28.
Donders
,
F. C.
,
1969
, “
On the Speed of Mental Processes
,”
Acta Psychol.
,
30
, pp.
412
431
.
29.
Cholewiak
,
R. W.
, and
Craig
,
J. C.
,
1984
, “
Vibrotactile Pattern Recognition and Discrimination at Several Body Sites
,”
Percept. Psychophys.
,
35
(
6
), pp.
503
514
.
30.
Lee
,
V. S.
,
Solomonidis
,
S. E.
, and
Spence
,
W. D.
,
1997
, “
Stump-Socket Interface Pressure as an Aid to Socket Design in Prostheses for Trans-Femoral Amputees—A Preliminary Study
,”
J. Eng. Med.
,
211
(
2
), pp.
167
180
.
31.
Zhang
,
L.
,
Zhu
,
M.
,
Shen
,
L.
, and
Zheng
,
F.
,
2013
, “
Finite Element Analysis of the Contact Interface Between Trans-Femoral Stump and Prosthetic Socket
,”
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Osaka, Japan
,
July 3–7
.
32.
Luce
,
R. D.
,
1986
,
Response Times: Their Role in Inferring Elementary Mental Organization
,
Oxford University Press
,
New York
.
33.
Craig
,
J. C.
,
1980
, “
Modes of Vibrotactile Pattern Generation
,”
J. Exp. Psychol. Hum. Percept. Perform.
,
6
(
1
), pp.
151
166
.
34.
Weinstein
,
S.
,
1966
, “
Intensive and Extensive Aspects of Tactile Sensitivity as a Function of Body Part, Sex, and Laterality
,”
Proceedings of the First International Symposium on the Skin Senses
,
Tallahassee, FL
,
March
.
35.
Kenshalo
,
D. R.
, and
Birren J. E., & Schaie K. W. (Eds.)
,
1977
,
Handbook of the Psychology of Aging
,
Van Nostrand Reinhold
,
New York, NY
, pp.
562
575
.
36.
Ellenberg
,
M.
,
1958
, “
Diabetic Neuropathy Presenting as the Initial Clinical Manifestation of Diabetes
,”
Ann. Intern. Med.
,
49
(
3
), pp.
620
631
.
37.
Gardner
,
R. M.
,
Salaz
,
V.
,
Reyes
,
B.
, and
Blake
,
S. J.
,
1983
, “
Sensitivity to Proprioceptive Feedback in Obese Subjects
,”
Percept. Motor Skills
,
57
(
3
), pp.
1111
1118
.
38.
Davis
,
R. W.
,
1993
, “
Phantom Sensation, Phantom Pain, and Stump Pain
,”
Arch. Phys. Med. Rehabil.
,
74
(
1
), pp.
79
91
.
39.
Duysens
,
J.
,
Tax
,
A. A.
,
Nawijn
,
S.
,
Berger
,
W.
,
Prokop
,
T.
, and
Altenmüller
,
E.
,
1995
, “
Gating of Sensation and Evoked Potentials Following Foot Stimulation During Human Gait
,”
Exp. Brain Res.
,
105
(
3
), pp.
423
431
.
40.
Zehr
,
E. P.
,
Komiyama
,
T.
, and
Stein
,
R. B.
,
1997
, “
Cutaneous Reflexes During Human Gait: Electromyographic and Kinematic Responses to Electrical Stimulation
,”
J. Neurophysiol.
,
77
(
6
), pp.
3311
3325
.
You do not currently have access to this content.