This paper aims to investigate the airfoil flutter damage-mitigating problem in hypersonic flow. A new adaptive robust nonlinear predictive control law is designed in this paper to mitigate the damage during airfoil flutter of a generic hypersonic flight vehicle. A three-degrees-of-freedom airfoil dynamic motion model is established, in which the third piston theory is employed to derive the unsteady aerodynamics. Then, the complicated responses of the hypersonic airfoil flutter model are analyzed. In order to mitigate the damage of the airfoil, a predictive controller is designed by introducing an adaptive predictive period, and asymptotical stability analysis of the robust nonlinear predictive controller is performed. Subsequently, based on the nonlinear aerodynamics of the airfoil and damage accumulation model, the damage of the airfoil is observed online. Simulation results illustrate the effectiveness of the proposed method.

References

References
1.
Dessi
,
D.
, and
Mastroddi
,
F.
,
2004
, “
Limit-Cycle Stability Reversal Via Singular Perturbation and Wing-Flap Flutter
,”
J. Fluids Struct.
,
19
(
6
), pp.
765
783
.
2.
Lee
,
K. W.
, and
Singh
,
S. N.
,
2018
, “
L1 Adaptive Control of an Aeroelastic System With Unsteady Aerodynamics and Gust Load
,”
J. Vib. Control
,
24
(
2
), pp.
303
322
.
3.
Hafeez
,
M. M.
, and
Elbadawy
,
A.
,
2018
, “
Flutter Limit Investigation for a Horizontal Axis Wind Turbine Blade
,”
ASME J. Vib. Acoust.
,
140
(
4
), p.
041014
.
4.
Bernelli-Zazzera
,
F.
,
Mantegazza
,
P.
,
Mazzoni
,
G.
, and
Rendina
,
M.
,
2000
, “
Active Flutter Suppression Using Recurrent Neural Networks
,”
J. Guidance Control Dyn.
,
23
(
6
), pp.
1030
1036
.
5.
Lee
,
B. H.
,
Choo
,
J.
,
Na
,
S.
,
Marzocca
,
P.
, and
Librescu
,
L.
,
2010
, “
Sliding Mode Robust Control of Supersonic Three Degrees-of-Freedom Airfoils
,”
Int. J. Control Automat. Syst.
,
8
(
2
), pp.
279
288
.
6.
Wang
,
Y. H.
,
Zhu
,
L.
,
Wu
,
Q. X.
, and
Jiang
,
C. S.
,
2014
, “
Fuzzy Approximation by a Novel Levenberg-Marquardt Method for Two-Degree-of-Freedom Hypersonic Flutter Model
,”
ASME J. Vib. Acoust.
,
136
(
4
), p.
044502
.
7.
Mei
,
G. H.
,
Zhang
,
J. Z.
, and
Kang
,
C.
,
2017
, “
Analysis of Curved Panel Flutter in Supersonic and Transonic Airflows Using a Fluid CStructure Coupling Algorithm
,”
ASME J. Vib. Acoust.
,
139
(
4
), p.
041004
.
8.
Wang
,
Y. H.
,
Zhang
,
Q.
, and
Zhu
,
L.
,
2015
, “
Active Control of Hypersonic Airfoil Flutter Via Adaptive Fuzzy Sliding Mode Method
,”
J. Vib. Control
,
21
(
1
), pp.
134
141
.
9.
Cao
,
D. Q.
, and
Zhao
,
N.
,
2011
, “
Active Control of Supersonic/Hypersonic Aeroelastic Flutter for a Two-Dimensional Airfoil With Flap
,”
Sci. China Technol. Sci.
,
54
(
8
), pp.
1943
1953
.
10.
Song
,
Z. G.
,
Yang
,
T. Z.
,
Li
,
F. M.
,
Carrera
,
E.
, and
Hagedorn
,
P.
,
2018
, “
A Method of Panel Flutter Suppression and Elimination for Aeroelastic Structures in Supersonic Airflow
,”
ASME J. Vib. Acoust.
,
140
(
6
), p.
064501
.
11.
Oppenheimer
,
M.
, and
Doman
,
D.
,
2006
, “A
Hypersonic Vehicle Model Developed With Piston Theory
,”
AIAA Atmospheric Flight Mechanics Conference and Exhibit
,
Keystone, CO
,
Aug. 21–24
, Paper No. 2006-6637.
12.
Librescu
,
L.
,
Chiocchia
,
G.
, and
Marzocca
,
P.
,
2003
, “
Implications of Cubic Physical/Aerodynamic Non-Linearities on the Character of the Flutter Instability Boundary
,”
Int. J. Non-Linear Mech.
,
38
(
2
), pp.
173
199
.
13.
Clarke
,
D. W.
,
1994
,
Advances in Model-Based Predictive Control
,
Oxford University Press
,
Oxford
.
14.
Chen
,
W. H.
,
Ballance
,
D. J.
, and
Gawthrop
,
P. J.
,
2003
, “
Optimal Control of Nonlinear Systems: A Predictive Control Approach
,”
Automatica
,
39
(
4
), pp.
633
641
.
15.
Hedjar
,
R.
,
Toumi
,
R.
,
Boucher
,
P.
, and
Dumur
,
D.
,
2005
, “
Finite Horizon Nonlinear Predictive Control by the Taylor Approximation: Application to Robot Tracking Trajectory
,”
Int. J. Appl. Math. Comput. Sci.
,
15
(
4
), pp.
527
540
.
16.
Cheng
,
L.
,
Jiang
,
C. S.
, and
Pu
,
M.
,
2011
, “
Online-SVR-Compensated Nonlinear Generalized Predictive Control for Hypersonic Vehicles
,”
Sci. China Inform. Sci.
,
54
(
3
), pp.
551
562
.
17.
Errouissi
,
R.
,
Ouhrouche
,
M.
,
Chen
,
W. H.
, and
Trzynadlowki
,
A. M.
,
2012
, “
Robust Nonlinear Predictive Controller for Permanent-Magnet Synchronous Motors With an Optimized Cost Function
,”
IEEE Trans. Ind. Electron.
,
59
(
7
), pp.
2849
2858
.
18.
Caplin
,
J.
,
Ray
,
A.
, and
Joshi
,
S. M.
,
2001
, “
Damage-Mitigating Control of Aircraft for Enhanced Structural Durability
,”
IEEE Trans. Aerosp. Electron. Syst.
,
37
(
3
), pp.
849
862
.
19.
Ray
,
A.
, and
Patankar
,
R.
,
2001
, “
Fatigue Crack Growth Under Variable-Amplitude Loading: Part II-Code Development and Model Validation
,”
Appl. Math. Model.
,
25
(
11
), pp.
995
1013
.
20.
Newman
,
J.
, and
James
,
C.
,
1992
, “FASTRAN-2: A Fatigue Crack Growth Structural Analysis Program,”
Langley Research Center
,
Hampton, VA
,
NASA Technical Memorandum 104159
.
21.
Li
,
D.
,
Chen
,
T.
,
Marquez
,
H. J.
, and
Gooden
,
R. K.
,
2003
, “
Damage Modeling and Life Extending Control of a Boiler-Turbine System
,”
IEEE
, pp.
2317
2322
.
22.
Tangirala
,
S.
,
Holmes
,
M.
,
Ray
,
A.
, and
Carpino
,
M.
,
1998
, “
Life-Extending Control of Mechanical Structures: Experimental Verification of the Concept
,”
Automatica
,
34
(
1
), pp.
3
14
.
23.
Dowling
,
N. E.
,
2004
, “
Mean Stress Effects in Stress-Life and Strain-Life Fatigue
,”
SAE Technical Paper
,
32
(
12
), pp.
1004
1019
.
24.
Ray
,
A.
,
Wu
,
M. K.
,
Dai
,
X.
,
Carpino
,
M.
, and
Lorenzo
,
C.
,
1993
, “
Damage-Mitigating Control of Space Propulsion Systems for High Performance and Extended life
,”
AIAA/SAE/ASME/ASEE 29th Joint Propulsion Conference and Exhibit
,
Monterey, CA
,
June 28–30
.
25.
Wang
,
J.
,
Li
,
Q.
,
Xiong
,
C.
,
Li
,
Y.
, and
Sun
,
B.
,
2018
, “
Effect of Zr on the Martensitic Transformation and the Shape Memory Effect in Ti-Zr-Nb-Ta High-Temperature Shape Memory Alloys
,”
J. Alloys Compd.
,
737
, pp.
672
677
.
26.
Ko
,
W. L.
,
Richards
,
W. L.
, and
Tran
,
V. T.
,
2007
, “
Displacement Theories for In-Flight Deformed Shape Predictions of Aerospace Structures
,”
Dryden Flight Research Center
, NASA Report No. 214612.
27.
Zhang
,
Z. H.
,
Li
,
P. S.
, and
Fu
,
J. C.
,
2015
, “
Analysis on Hopf Bifurcation of the Grid-Connected Small Hydropower System Based on Center Manifold Theory
,”
J. Vib. Shock
34
(
2
), pp.
50
54
.
This content is only available via PDF.
You do not currently have access to this content.