Wayside acoustic defective bearing detector (ADBD) system is a potential technique in ensuring the safety of traveling vehicles. However, Doppler distortion and multiple moving sources aliasing in the acquired acoustic signals decrease the accuracy of defective bearing fault diagnosis. Currently, the method of constructing time-frequency (TF) masks for source separation was limited by an empirical threshold setting. To overcome this limitation, this study proposed a dynamic Doppler multisource separation model and constructed a time domain-separating matrix (TDSM) to realize multiple moving sources separation in the time domain. The TDSM was designed with two steps of (1) constructing separating curves and time domain remapping matrix (TDRM) and (2) remapping each element of separating curves to its corresponding time according to the TDRM. Both TDSM and TDRM were driven by geometrical and motion parameters, which would be estimated by Doppler feature matching pursuit (DFMP) algorithm. After gaining the source components from the observed signals, correlation operation was carried out to estimate source signals. Moreover, fault diagnosis could be carried out by envelope spectrum analysis. Compared with the method of constructing TF masks, the proposed strategy could avoid setting thresholds empirically. Finally, the effectiveness of the proposed technique was validated by simulation and experimental cases. Results indicated the potential of this method for improving the performance of the ADBD system.

References

References
1.
Choe
,
H. C.
,
Wan
,
Y.
, and
Chan
,
A. K.
,
1997
, “
Neural Pattern Identification of Railroad Wheel-Bearing Faults From Audible Acoustic Signals: Comparison of FFT, CWT, and DWT Features
,”
Proceedings of SPIE
,
Bellingham, WA
,
Apr. 3
, vol.
3078
, pp.
480
496
.
2.
Chiementin
,
X.
,
Bolaers
,
F.
, and
Dron
,
J. P.
,
2007
, “
Early Detection of Fatigue Damage on Rolling Element Bearings Using Adapted Wavelet
,”
ASME J. Vib. Acoust.
,
129
(
4
), pp.
495
506
.
3.
Lei
,
Y.
,
He
,
Z.
, and
Zi
,
Y.
,
2008
, “
Application of a Novel Hybrid Intelligent Method to Compound Fault Diagnosis of Locomotive Roller Bearings
,”
ASME J. Vib. Acoust.
,
130
(
3
), p.
034501
.
4.
Cline
,
J. E.
,
Bilodeau
,
J. R.
, and
Smith
,
R. L.
,
1998
, “
Acoustic Wayside Identification of Freight Car Roller Bearing Defects
,”
Proceedings of ASME/IEEE Joint Railroad Conference
,
Philadelphia, PA
,
Apr. 15–16
, pp.
79
83
.
5.
Sneed
,
W. H.
, and
Smith
,
R. L.
,
1998
, “
On-Board Real-Time Railroad Bearing Defect Detection and Monitoring
,”
Proceedings of ASME/IEEE Joint Railroad Conference
,
Philadelphia, PA
,
Apr. 15–16
, pp.
149
153
.
6.
Tandon
,
N.
, and
Choudhury
,
A.
,
1999
, “
A Review of Vibration and Acoustic Measurement Methods for the Detection of Defects in Rolling Element Bearings
,”
Tribol. Int.
,
32
(
8
), pp.
469
480
.
7.
Cui
,
L.
,
Wang
,
J.
, and
Lee
,
S.
,
2014
, “
Matching Pursuit of an Adaptive Impulse Dictionary for Bearing Fault Diagnosis
,”
J. Sound Vib.
,
333
(
10
), pp.
2840
2862
.
8.
Wang
,
S.
,
Chen
,
X.
,
Tong
,
C.
, and
Zhao
,
Z.
,
2017
, “
Matching Synchrosqueezing Wavelet Transform and Application to Aeroengine Vibration Monitoring
,”
IEEE Trans. Instrum. Meas.
,
66
(
2
), pp.
360
372
.
9.
Cui
,
L.
,
Wu
,
N.
,
Ma
,
C.
, and
Wang
,
H.
,
2016
, “
Quantitative Fault Analysis of Roller Bearings Based on a Novel Matching Pursuit Method With a New Step-Impulse Dictionary
,”
Mech. Syst. Signal Process.
,
68–69
, pp.
34
43
.
10.
Wang
,
H.
,
Li
,
S.
,
Song
,
L.
, and
Cui
,
L.
,
2019
, “
A Novel Convolutional Neural Network Based Fault Recognition Method Via Image Fusion of Multi-Vibration-Signals
,”
Comput. Ind.
,
105
, pp.
182
190
.
11.
Wang
,
H.
,
Wang
,
P.
,
Song
,
L.
,
Ren
,
B.
, and
Cui
,
L.
,
2019
, “
A Novel Feature Enhancement Method Based on Improved Constraint Model of Online Dictionary Learning
,”
IEEE Access
,
7
, pp.
17599
17607
.
12.
Randall
,
R. B.
,
2011
,
Vibration-Based Condition Monitoring: Industrial, Aerospace and Automotive Applications
,
John Wiley & Sons
,
New York
.
13.
Bepperling
,
S. L.
, and
Schöbel
,
A.
,
2011
, “
Estimation of Safety Requirements for Wayside Hot Box Detection Systems
,”
FORMS/FORMAT 2010
,
Springer
,
New York
, pp.
135
143
.
14.
He
,
Y.
,
Zhang
,
X.
, and
Friswell
,
M.
,
2009
, “
Defect Diagnosis for Rolling Element Bearings Using Acoustic Emission
,”
ASME J. Vib. Acoust.
,
131
(
6
), p.
061012
.
15.
Zhang
,
X.
,
Bi
,
C.
,
Zhang
,
Y.
, and
Xu
,
L.
,
2011
, “
Transient Nearfield Acoustic Holography Based on an Interpolated Time-Domain Equivalent Source Method
,”
J. Acoust. Soc. Am.
,
130
(
3
), pp.
1430
1440
.
16.
Irani
,
F. D.
,
2002
, “
Development and Deployment of Advanced Wayside Condition Monitoring Systems
,”
7th International Heavy Haul Conference
,
Maleny, Qld
,
Jan.
, vol.
39
, pp.
39
45
.
17.
Dybała
,
J.
, and
Radkowski
,
S.
,
2013
, “
Reduction of Doppler Effect for the Needs of Wayside Condition Monitoring System of Railway Vehicles
,”
Mech. Syst. Signal Process.
,
38
(
1
), pp.
125
136
.
18.
Dybała
,
J.
,
Gałęzia
,
A.
, and
Mączak
,
J.
,
2008
, “
Verification of Doppler Effect Removal Method for the Needs of Pass-By Railway Condition Monitoring System
,”
Diagnostyka
,
4
(
48
), pp.
5
8
.
19.
Zhang
,
A.
,
Hu
,
F.
,
He
,
Q.
,
Shen
,
C.
,
Liu
,
F.
, and
Kong
,
F.
,
2014
, “
Doppler Shift Removal Based on Instantaneous Frequency Estimation for Wayside Fault Diagnosis of Train Bearings
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021019
.
20.
He
,
Q.
,
Wang
,
J.
,
Liu
,
Y.
,
Dai
,
D.
, and
Kong
,
F.
,
2012
, “
Multiscale Noise Tuning of Stochastic Resonance for Enhanced Fault Diagnosis in Rotating Machines
,”
Mech. Syst. Signal Process.
,
28
, pp.
443
457
.
21.
He
,
Q.
,
Wu
,
E.
, and
Pan
,
Y.
,
2018
, “
Multi-Scale Stochastic Resonance Spectrogram for Fault Diagnosis of Rolling Element Bearings
,”
J. Sound Vib.
,
420
, pp.
174
184
.
22.
He
,
Q.
,
Wang
,
J.
,
Hu
,
F.
, and
Kong
,
F.
,
2013
, “
Wayside Acoustic Diagnosis of Defective Train Bearings Based on Signal Resampling and Information Enhancement
,”
J. Sound Vib.
,
332
(
21
), pp.
5635
5649
.
23.
Lu
,
S.
,
He
,
Q.
,
Zhang
,
H.
, and
Kong
,
F.
,
2017
, “
Rotating Machine Fault Diagnosis Through Enhanced Stochastic Resonance by Full-Wave Signal Construction
,”
Mech. Syst. Signal Process.
,
85
, pp.
82
97
.
24.
Lu
,
S.
,
He
,
Q.
, and
Wang
,
J.
,
2019
, “
A Review of Stochastic Resonance in Rotating Machine Fault Detection
,”
Mech. Syst. Signal Process.
,
116
, pp.
230
260
.
25.
Zou
,
H.
,
Zhou
,
X.
,
Dai
,
Q.
, and
Li
,
Y.
,
2001
, “
Dopplerlet Based Time-Frequency Representation Via Matching Pursuits
,”
J. Electron. (China)
,
18
(
3
), pp.
217
227
.
26.
Shen
,
C.
,
Liu
,
F.
,
Wang
,
D.
,
Zhang
,
A.
,
Kong
,
F.
, and
Tse
,
P. W.
,
2013
, “
A Doppler Transient Model Based on the Laplace Wavelet and Spectrum Correlation Assessment for Locomotive Bearing Fault Diagnosis
,”
Sensors (Basel)
,
13
(
11
), pp.
15726
15746
.
27.
Liu
,
F.
,
He
,
Q.
,
Kong
,
F.
, and
Liu
,
Y.
,
2014
, “
Doppler Effect Reduction Based on Time-Domain Interpolation Resampling for Wayside Acoustic Defective Bearing Detector System
,”
Mech. Syst. Signal Process.
,
46
(
2
), pp.
253
271
.
28.
Shen
,
C.
,
Cai
,
G.
,
He
,
Z.
,
Huang
,
W.
, and
Zhu
,
Z.
,
2015
, “
A Parameterized Doppler Distorted Matching Model for Periodic Fault Identification in Locomotive Bearing
,”
Proc. Inst. Mech. Eng. C
,
230
(
20
), pp.
3791
3802
.
29.
Cardoso
,
J. F.
,
1998
, “
Blind Signal Separation: Statistical Principles
,”
Proc. IEEE
,
86
(
10
), pp.
2009
2025
.
30.
Lee
,
T. W.
,
1998
, “Independent Component Analysis,”
Independent Component Analysis: Theory and Applications
,
T. W.
Lee
, ed.,
Springer
,
Boston, MA
, pp.
27
66
.
31.
Akaike
,
H.
,
1998
, “Information Theory and an Extension of the Maximum Likelihood Principle,”
Selected Papers of Hirotugu Akaike
,
E.
Parzen
,
K.
Tanabe
, and
G.
Kitagawa
, eds.,
Springer
,
New York, NY
, pp.
199
213
.
32.
Hyvärinen
,
A.
,
Hurri
,
J.
, and
Hoyer
,
P. O.
,
2009
,
Natural Image Statistics: A Probabilistic Approach to Early Computational Vision
, Vol.
39
,
Springer Science & Business Media
,
London
.
33.
Herold
,
G.
, and
Sarradj
,
E.
,
2017
, “
Performance Analysis of Microphone Array Methods
,”
J. Sound Vib.
,
401
, pp.
152
168
.
34.
Cox
,
H.
,
Zeskind
,
R.
, and
Owen
,
M.
,
1987
, “
Robust Adaptive Beamforming
,”
IEEE Trans. Acoust. Speech Signal Process.
,
35
(
10
), pp.
1365
1376
.
35.
Xu
,
Z.
,
Tian
,
K.
,
He
,
Y.
,
Zhang
,
Z.
, and
Li
,
S.
,
2018
, “
Denoising Weighting Beamforming Method Applied to Sound Source Localization With Airflow Using Microphone Array
,”
ASME J. Vib. Acoust.
,
140
(
6
), p.
061015
.
36.
Litva
,
J.
, and
Lo
,
T. K.
,
1996
,
Digital Beamforming in Wireless Communications
,
Artech House, Inc.
,
Norwood, MA
.
37.
Schuler
,
K.
,
Younis
,
M.
,
Lenz
,
R.
, and
Wiesbeck
,
W.
,
2005
, “
Array Design for Automotive Digital Beamforming Radar System
,”
IEEE International Radar Conference
,
Arlington, VA
,
May 9–12
, pp.
435
440
.
38.
Kallinger
,
M.
,
Galdo
,
G. D.
,
Kuech
,
F.
,
Mahne
,
D.
, and
Schultz-Amling
,
R.
,
2009
, “
Spatial Filtering Using Directional Audio Coding Parameters
,”
2009 IEEE International Conference on Acoustics, Speech and Signal Processing
,
Taipei, China
,
Apr. 19–24
, pp.
217
220
.
39.
Zhang
,
S.
,
He
,
Q.
,
Ouyang
,
K.
, and
Xiong
,
W.
,
2018
, “
Multi-Bearing Weak Defect Detection for Wayside Acoustic Diagnosis Based on a Time-Varying Spatial Filtering Rearrangement
,”
Mech. Syst. Signal Process.
,
100
, pp.
224
241
.
40.
Zhang
,
H.
,
Lu
,
S.
,
He
,
Q.
, and
Kong
,
F.
,
2016
, “
Multi-Bearing Defect Detection With Trackside Acoustic Signal Based on a Pseudo Time–Frequency Analysis and Dopplerlet Filter
,”
Mech. Syst. Signal Process.
,
70–71
, pp.
176
200
.
41.
Zhang
,
H.
,
Zhang
,
S.
,
He
,
Q.
, and
Kong
,
F.
,
2016
, “
The Doppler Effect Based Acoustic Source Separation for a Wayside Train Bearing Monitoring System
,”
J. Sound Vib.
,
361
, pp.
307
329
.
42.
Morse
,
P. M.
, and
Ingard
,
K. U.
,
1986
,
Theoretical Acoustics
,
Princeton University Press
,
Princeton, NJ
.
43.
Sai Ho
,
C.
, and
Hing Kai
,
C.
,
2012
, “
A Two-Level Genetic Algorithm to Determine Production Frequencies for Economic Lot Scheduling Problem
,”
IEEE Trans. Ind. Electron.
,
59
(
1
), pp.
611
619
.
44.
Bi
,
C.
,
Li
,
Y.
,
Zhou
,
R.
, and
Zhang
,
Y.
,
2018
, “
A Comparison of Equivalent Source Method and Monopole Time Reversal Method for Noise Source Localization
,”
ASME J. Vib. Acoust.
,
140
(
6
), p.
061011
.
45.
Jiang
,
T.
,
He
,
Q.
, and
Peng
,
Z.
,
2019
, “
Proposal for the Realization of a Single-Detector Acoustic Camera Using a Space-Coiling Anisotropic Metamaterial
,”
Phys. Rev. Appl.
,
11
(
3
), p.
034013
.
46.
Jiang
,
T.
,
He
,
Q.
, and
Peng
,
Z.
,
2018
, “
Enhanced Directional Acoustic Sensing With Phononic Crystal Cavity Resonance
,”
Appl. Phys. Lett.
,
112
(
26
), p.
261902
.
This content is only available via PDF.
You do not currently have access to this content.