A simple passive technique of vibration isolation for flexible structures by nonlinear boundaries is investigated, which to our best knowledge is the first study of its kind reported in the literature. The equations of the structure are derived with Hamilton’s principle. An iterative analytic method is investigated to improve the accuracy of the response prediction. The effect of nonlinear boundaries of the structure is studied compared with the linear structure. It is found that stronger nonlinearities in the boundary make the system more stable. Analytical and simulation results show that nonlinear boundaries can significantly reduce the vibration and stress of flexible structures. It is important to point out that with the help of nonlinear boundaries, structural vibration and stress control can be achieved without altering the original structure.

References

References
1.
Bel-Hadj-Ali
,
N.
, and
Smith
,
I. F. C.
,
2010
, “
Dynamic Behavior and Vibration Control of a Tensegrity Structure
,”
Int. J. Solids Struct.
,
47
(
9
), pp.
1285
1296
.
2.
Tu
,
Y. Q.
, and
Zheng
,
G. T.
,
2007
, “
On the Vibration Isolation of Flexible Structures
,”
J. Appl. Mech.
,
74
(
3
), pp.
415
420
.
3.
Yang
,
B. B.
,
Hu
,
Y. F.
,
Vicario
,
F.
,
Zhang
,
J. G.
, and
Song
,
C. S.
,
2017
, “
Improvements of Magnetic Suspension Active Vibration Isolation for Floating Raft System
,”
Int. J. Appl. Electromagn. Mech.
,
53
(
2
), pp.
193
209
.
4.
Alhan
,
C.
, and
Gavin
,
H.
,
2004
, “
A Parametric Study of Linear and Non-Linear Passively Damped Seismic Isolation Systems for Buildings
,”
Eng. Struct.
,
26
(
4
), pp.
485
497
.
5.
Zhu
,
H. P.
,
Chen
,
C. L.
,
Zhu
,
A. Z.
, and
Yuan
,
Y.
,
2013
, “
Isolation Performance Study of the Hong Kong-Zhuhai-Macao Bridge Engineering
,”
J. Earthq. Tsunami
,
7
(
3
),
1350018
.
6.
Crede
,
C. E.
,
1951
,
Vibration and Shock Isolation
,
Wiley
,
New York
.
7.
Rivin
,
E. I.
,
2001
,
Passive Vibration Isolation
,
ASME Press
,
New York
.
8.
Ibrahim
,
R. A.
,
2008
, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
(
3–5
), pp.
371
452
.
9.
Daley
,
S.
,
Hatonen
,
J.
, and
Owens
,
D. H.
,
2006
, “
Active Vibration Isolation in a “Smart Spring” Mount1 Using a Repetitive Control Approach
,”
Control Eng. Pract.
,
14
(
9
), pp.
991
997
.
10.
Yan
,
B.
,
Brennan
,
M. J.
,
Elliott
,
S. J.
, and
Ferguson
,
N. S.
,
2010
, “
Active Vibration Isolation of a System With a Distributed Parameter Isolator Using Absolute Velocity Feedback Control
,”
J. Sound Vib.
,
329
(
10
), pp.
1601
1614
.
11.
Sahasrabudhe
,
S. S.
, and
Nagarajaiah
,
S.
,
2005
, “
Semi-Active Control of Sliding Isolated Bridges Using MR Dampers: An Experimental and Numerical Study
,”
Earthq. Eng. Struct. Dyn.
,
34
(
8
), pp.
965
983
.
12.
Zhang
,
X.-X.
, and
Xu
,
J.
,
2016
, “
Time Delay Identifiability and Estimation for the Delayed Linear System With Incomplete Measurement
,”
J. Sound Vib.
,
361
, pp.
330
340
.
13.
Zhang
,
X.-X.
,
Xu
,
J.
, and
Feng
,
Z.-C.
,
2017
, “
Nonlinear Equivalent Model and Its Identification for a Delayed Absorber With Magnetic Action Using Distorted Measurement
,”
Nonlinear Dyn.
,
88
(
2
), pp.
937
954
.
14.
Blair
,
D. G.
,
Ju
,
L.
, and
Peng
,
H.
,
1993
, “
Vibration Isolation for Gravitational Wave Detection
,”
Class. Quantum Gravity
,
10
(
11
), pp.
2407
2418
.
15.
Losurdo
,
G.
,
Bernardini
,
M.
,
Braccini
,
S.
,
Bradaschia
,
C.
,
Dattilo
,
C. C. V.
,
De-Salvo
,
R.
,
Di-Virgilio
,
A.
,
Frasconi
,
F.
, and
Gaddi
,
A.
,
1999
, “
An Inverted Pendulum Preisolator Stage for the Virgo Suspension System
,”
Rev. Sci. Instrum.
,
70
(
5
), pp.
2507
2515
.
16.
Platus
,
D. L.
,
1992
, “
Negative-Stiffness-Mechanism Vibration Isolation Systems
,”
Proc. Vib. Control Microelectron. Opt. Metrol.
,
1619
, pp.
44
55
.
17.
Platus
,
D. L.
,
1999
, “
Negative-Stiffness-Mechanism Vibration Isolation Systems
,”
Proc. Optomech. Eng. Vib. Control
,
3786
, pp.
98
106
.
18.
Sapountzakis
,
E. J.
,
Syrimi
,
P. G.
,
Pantazis
,
I. A.
, and
Antoniadis
,
I. A.
,
2017
, “
KDamper Concept in Seismic Isolation of Bridges With Flexible Piers
,”
Eng. Struct.
,
153
, pp.
525
539
.
19.
Zhou
,
J. X.
,
Wang
,
X. L.
,
Xu
,
D. L.
, and
Bishop
,
S.
,
2015
, “
Nonlinear Dynamic Characteristics of a Quasi-Zero Stiffness Vibration Isolator With Cam-Roller-Spring Mechanisms
,”
J. Sound Vib.
,
346
, pp.
53
69
.
20.
Zhou
,
J. X.
,
Xiao
,
Q. Y.
,
Xu
,
D. L.
,
Ouyang
,
H. J.
, and
Li
,
Y. L.
,
2017
, “
A Novel Quasi-Zero-Stiffness Strut and Its Applications in Six-Degree-of-Freedom Vibration Isolation Platform
,”
J. Sound Vib.
,
394
, pp.
59
74
.
21.
Li
,
Q.
,
Zhu
,
Y.
,
Xu
,
D. F.
,
Hu
,
J. C.
,
Min
,
W.
, and
Pang
,
L. C.
,
2013
, “
A Negative Stiffness Vibration Isolator Using Magnetic Spring Combined With Rubber Membrane
,”
J. Mech. Sci. Technol.
,
27
(
3
), pp.
813
824
.
22.
Carrella
,
A.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2007
, “
Static Analysis of a Passive Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
J. Sound Vib.
,
301
(
3–5
), pp.
678
689
.
23.
Peng
,
Z. K.
,
Lang
,
Z. Q.
,
Zhao
,
L.
,
Billings
,
S. A.
,
Tomlinson
,
G. R.
, and
Guo
,
P.
,
2011
, “
The Force Transmissibility of MDOF Structures With a Non-Linear Viscous Damping Device
,”
Int. J. Nonlinear Mech.
,
46
(
10
), pp.
1305
1314
.
24.
Peng
,
Z. K.
,
Meng
,
G.
,
Lang
,
Z. Q.
,
Zhang
,
W. M.
, and
Chu
,
F. L.
,
2012
, “
Study of the Effects of Cubic Nonlinear Damping on Vibration Isolations Using Harmonic Balance Method
,”
Int. J. Nonlinear Mech.
,
47
(
10
), pp.
1073
1080
.
25.
Guo
,
P. F.
,
Lang
,
Z. Q.
, and
Peng
,
Z. K.
,
2012
, “
Analysis and Design of the Force and Displacement Transmissibility of Nonlinear Viscous Damper Based Vibration Isolation Systems
,”
Nonlinear Dyn.
,
67
(
4
), pp.
2671
2687
.
26.
Tang
,
B.
, and
Brennan
,
M. J.
,
2013
, “
A Comparison of Two Nonlinear Damping Mechanisms in a Vibration Isolator
,”
J. Sound Vib.
,
332
(
3
), pp.
510
520
.
27.
Sun
,
J. Y.
,
Huang
,
X. C.
,
Liu
,
X. T.
,
Xiao
,
F.
, and
Hua
,
H. X.
,
2013
, “
Study on the Force Transmissibility of Vibration Isolators With Geometric Nonlinear Damping
,”
Nonlinear Dyn.
,
74
(
4
), pp.
1103
1112
.
28.
Ho
,
C.
,
Lang
,
Z.-Q.
, and
Billings
,
S. A.
,
2014
, “
Design of Vibration Isolators by Exploiting the Beneficial Effects of Stiffness and Damping Nonlinearities
,”
J. Sound Vib.
,
333
(
12
), pp.
2489
2504
.
29.
Huang
,
D. M.
,
Xu
,
W.
,
Xie
,
W. X.
, and
Liu
,
Y. J.
,
2015
, “
Dynamical Properties of a Forced Vibration Isolation System With Real-Power Nonlinearities in Restoring and Damping Forces
,”
Nonlinear Dyn.
,
81
(
1–2
), pp.
641
658
.
30.
Cheng
,
C.
,
Li
,
S. M.
,
Wang
,
Y.
, and
Jiang
,
X. X.
,
2017
, “
Force and Displacement Transmissibility of a Quasi-Zero Stiffness Vibration Isolator With Geometric Nonlinear Damping
,”
Nonlinear Dyn.
,
87
(
4
), pp.
2267
2279
.
31.
Huang
,
X. L.
, and
Shen
,
H. S.
,
2004
, “
Nonlinear Vibration and Dynamic Response of Functionally Graded Plates in Thermal Environments
,”
Int. J. Solids Struct.
,
41
(
9–10
), pp.
2403
2427
.
32.
Chen
,
L.-Q.
, and
Yang
,
X. D.
,
2005
, “
Steady-State Response of Axially Moving Viscoelastic Beams With Pulsating Speed: Comparison of Two Nonlinear Models
,”
Int. J. Solids Struct.
,
42
(
1
), pp.
37
50
.
33.
Zu
,
J. W. Z.
, and
Han
,
R. P. S.
,
1992
, “
Natural Frequencies and Normal Modes of a Spinning Timoshenko Beam With General Boundary Conditions
,”
ASME J. Appl. Mech.
,
59
(
2S
), pp.
S197
S204
.
34.
Israr
,
A.
,
Cartmell
,
M. P.
,
Manoach
,
E.
,
Trendafilova
,
I.
,
Krawczuk
,
M.
, and
Arkadiusz
,
L.
,
2009
, “
Analytical Modeling and Vibration Analysis of Partially Cracked Rectangular Plates With Different Boundary Conditions and Loading
,”
ASME J. Appl. Mech.
,
76
(
1
), p.
011005
.
35.
Ding
,
H.
,
Li
,
Y.
, and
Chen
,
L.-Q.
,
2018
, “
Nonlinear Vibration of a Beam With Asymmetric Elastic Supports
,”
Nonlinear Dyn.
pp.
1
12
.
36.
Mao
,
X.-Y.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2017
, “
Vibration of Flexible Structures Under Nonlinear Boundary Conditions
,”
ASME J. Appl. Mech.
,
84
(
11
), p.
111006
.
37.
Ding
,
H.
,
Dowell
,
E. H.
, and
Chen
,
L.-Q.
,
2018
, “
Transmissibility of Bending Vibration of an Elastic Beam
,”
ASME J. Vib. Acoust.
,
140
(
3
), p.
031007
.
38.
Ding
,
H.
,
Lu
,
Z.-Q.
, and
Chen
,
L.-Q.
,
2019
, “
Nonlinear Isolation of Transverse Vibration of Pre-Pressure Beams
,”
J. Sound Vib.
,
442
, pp.
738
751
.
39.
Ding
,
H.
, and
Chen
,
L.-Q.
,
2018
, “
Nonlinear Vibration of a Slightly Curved Beam With Quasi-Zero-Stiffness Isolators
,”
Nonlinear Dyn.
pp.
1
16
.
40.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
John Wiley & Sons
,
New York
.
41.
Mao
,
X.-Y.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2017
, “
Dynamics of a Super-Critically Axially Moving Beam With Parametric and Forced Resonance
,”
Nonlinear Dyn.
,
89
(
2
), pp.
1475
1487
.
42.
Mao
,
X.-Y.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2017
, “
Forced Vibration of Axially Moving Beam With Internal Resonance in the Supercritical Regime
,”
Int. J. Mech. Sci.
,
131
, pp.
81
94
.
43.
Mao
,
X.-Y.
,
Ding
,
H.
,
Lim
,
C. W.
, and
Chen
,
L.-Q.
,
2016
, “
Super-Harmonic Resonance and Multi-Frequency Responses of a Super-Critical Translating Beam
,”
J. Sound Vib.
,
385
, pp.
267
283
.
44.
Wang
,
Y. L.
,
Wang
,
X. W.
, and
Zhou
,
Y.
,
2004
, “
Static and Free Vibration Analyses of Rectangular Plates by the New Version of the Differential Quadrature Element Method
,”
Int. J. Numer. Methods Eng.
,
59
(
9
), pp.
1207
1226
.
45.
Wang
,
X. W.
, and
Wang
,
Y. L.
,
2013
, “
Free Vibration Analysis of Multiple-Stepped Beams by the Differential Quadrature Element Method
,”
Appl. Math. Comput.
,
219
(
11
), pp.
5802
5810
.
46.
Shu
,
C.
,
Chew
,
Y. T.
, and
Richards
,
B. E.
,
1995
, “
Generalized Differential and Integral Quadrature and Their Application to Solve Boundary Layer Equations
,”
Int. J. Numer. Methods Fluids
,
21
(
9
), pp.
723
733
.
This content is only available via PDF.
You do not currently have access to this content.