Nonlinear energy interaction is a fascinating feature of nonlinear oscillators and has been drawing the attention of researchers since the last few decades. Omnipresent friction in mechanical systems can play a crucial role in modifying these interactions. Using post-buckled flexible inverted pendulum as a candidate system we characterize here, theoretically and experimentally, significant changes in the nonlinear energy transfer in the presence of friction at the input side. Particularly, even with relatively low friction, the energy gets transferred in the higher harmonics of excitation close to a resonant mode as against the transfer to higher modes reported previously. We term this new phenomenon as “excitation harmonic resonance locking.” Theoretical modeling and simulations, considering large deformations, based on assumed modes method, and using a simple friction model reasonably capture the experimental observation. In summary, the paper explicates the role of friction in shifting energy transfer frequencies and can be useful in understanding and designing of oscillators and nonlinear vibrating systems.

References

References
1.
Nayfeh
,
A.
,
2000
,
Nonlinear Interactions: Analytical, Computational, and Experimental Methods
,
Wiley Series in Nonlinear Science, Wiley
,
New York
.
2.
Mangussi
,
F.
, and
Zanette
,
D. H.
,
2016
, “
Internal Resonance in a Vibrating Beam: A Zoo of Nonlinear Resonance Peaks
,”
PLoS. One.
,
11
(
9
), p.
e0162365
.
3.
Malatkar
,
P.
, and
Nayfeh
,
A. H.
,
2003
, “
On the Transfer of Energy Between Widely Spaced Modes in Structures
,”
Nonlinear Dyn.
,
31
(
2
), pp.
225
242
.
4.
Oh
,
K.
, and
Nayfeh
,
A.
,
1998
, “
High-to Low-Frequency Modal Interactions in a Cantilever Composite Plate
,”
ASME J. Vib. Acoust.
,
120
(
2
), pp.
579
587
.
5.
Emam
,
S. A.
, and
Nayfeh
,
A. H.
,
2004
, “
Nonlinear Responses of Buckled Beams to Subharmonic-Resonance Excitations
,”
Nonlinear Dyn.
,
35
(
2
), pp.
105
122
.
6.
Emam
,
S. A.
, and
Nayfeh
,
A. H.
,
2013
, “
Non-Linear Response of Buckled Beams to 1: 1 and 3: 1 Internal Resonances
,”
Int. J. Non-Linear Mech.
,
52
, pp.
12
25
.
7.
Emam
,
S. A.
, and
Nayfeh
,
A. H.
,
2004
, “
On the Nonlinear Dynamics of a Buckled Beam Subjected to a Primary-Resonance Excitation
,”
Nonlinear Dyn.
,
35
(
1
), pp.
1
17
.
8.
Ji
,
J.-C.
, and
Hansen
,
C.
,
2000
, “
Non-Linear Response of a Post-Buckled Beam Subjected to a Harmonic Axial Excitation
,”
J. Sound Vib.
,
237
(
2
), pp.
303
318
.
9.
Nayfeh
,
A.
, and
Mook
,
D.
,
1995
, “
Energy Transfer from High-Frequency to Low-Frequency Modes in Structures
,”
ASME J. Vib. Acoust.
,
117
(
B
), pp.
186
195
.
10.
Nayfeh
,
S.
, and
Nayfeh
,
A.
,
1994
, “
Energy Transfer from High-to Low-Frequency Modes in a Flexible Structure Via Modulation
,”
ASME J. Vib. Acoust.
116
(
2
), pp.
203
207
.
11.
Anderson
,
T.
,
Balachandran
,
B.
, and
Nayfeh
,
A.
,
1994
, “
Nonlinear Resonances in a Flexible Cantilever Beam
,”
ASME J. Vib. Acoust.
,
116
(
4
), pp.
480
484
.
12.
Popovic
,
P.
,
Nayfeh
,
A. H.
,
Oh
,
K.
, and
Nayfeh
,
S. A.
,
1995
, “
An Experimental Investigation of Energy Transfer From a High-Frequency Mode to a Low-Frequency Mode in a Flexible Structure
,”
Modal Anal.
,
1
(
1
), pp.
115
128
.
13.
Balachandran
,
B.
, and
Nayfeh
,
A.
,
1991
, “
Observations of Modal Interactions in Resonantly Forced Beam-Mass Structures
,”
Nonlinear Dyn.
,
2
(
2
), pp.
77
117
.
14.
Afaneh
,
A.
, and
Ibrahim
,
R.
,
1993
, “
Nonlinear Response of an Initially Buckled Beam with 1: 1 Internal Resonance to Sinusoidal Excitation
,”
Nonlinear Dyn.
,
4
(
6
), pp.
547
571
.
15.
Al-Shudeifat
,
M. A.
,
2017
, “
Nonlinear Energy Sinks With Nontraditional Kinds of Nonlinear Restoring Forces
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
024503
.
16.
Gourdon
,
E.
,
Savadkoohi
,
A. T.
, and
Vargas
,
V. A.
,
2018
, “
Targeted Energy Transfer from One Acoustical Mode to an Helmholtz Resonator with Nonlinear Behavior
,”
ASME J. Vib. Acoust.
,
140
(
6
), p.
061005
.
17.
Li
,
W.
,
Yang
,
X.-D.
,
Zhang
,
W.
,
Ren
,
Y.
, and
Yang
,
T.
,
2019
, “
Free Vibrations and Energy Transfer Analysis of the Vibrating Piezoelectric Gyroscope Based on the Linear and Nonlinear Decoupling Methods
,”
ASME J. Vib. Acoust.
, pp.
1
27
.
18.
Dweib
,
A.
, and
D’souza
,
A.
,
1990
, “
Self-Excited Vibrations Induced by Dry Friction, Part 1: Experimental Study
,”
J. Sound Vib.
,
137
(
2
), pp.
163
175
.
19.
D’souza
,
A.
, and
Dweib
,
A.
,
1990
, “
Self-Excited Vibrations Induced by Dry Friction, Part 2: Stability and Limit-Cycle Analysis
,”
J. Sound Vib.
,
137
(
2
), pp.
177
190
.
20.
Brockley
,
C.
, and
Ko
,
P. L.
,
1970
, “
Quasi-Harmonic Friction-Induced Vibration
,”
ASME J. Lubr. Technol.
,
92
(
4
), pp.
550
556
.
21.
Ibrahim
,
R.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal, and Chaos Part Ii: Dynamics and Modeling
,”
ASME Appl. Mech. Rev.
,
47
(
7
), pp.
227
253
.
22.
Niknam
,
A.
, and
Farhang
,
K.
,
2019
, “
Friction-Induced Vibration Due to Mode-Coupling and Intermittent Contact Loss
,”
ASME J. Vib. Acoust.
,
141
(
2
), p.
021012
.
23.
Gandhi
,
P. S.
,
Borja
,
P.
, and
Ortega
,
R.
,
2016
, “
Energy Shaping Control of an Inverted Flexible Pendulum Fixed to a Cart
,”
Control Eng. Practice
,
56
, pp.
27
36
.
24.
Patil
,
O.
, and
Gandhi
,
P.
,
2014
, “
On the Dynamics and Multiple Equilibria of an Inverted Flexible Pendulum with Tip Mass on a Cart
,”
ASME J. Dyn. Sys. Meas. Control
,
136
(
4
), p.
041017
.
25.
Belhaq
,
M.
, and
Fahsi
,
A.
,
2012
, “
Frequency-Locking in Nonlinear Forced Oscillators Near 3: 1 and 4: 1 Resonances
,”
Annal. Solid Struct. Mech.
,
4
(
1–2
), pp.
15
23
.
26.
Belhaq
,
M.
, and
Fahsi
,
A.
,
2008
, “
2: 1 and 1: 1 Frequency-Locking in Fast Excited van der Pol–Mathieu–Duffing Oscillator
,”
Nonlinear Dyn.
,
53
(
1–2
), pp.
139
152
.
27.
Warmiński
,
J.
,
2001
, “
Synchronisation Effects and Chaos in the van der Pol-Mathieu Oscillator
,”
J. Theoret. Appl. Mech.
,
39
(
4
), pp.
861
884
.
28.
Szabelski
,
K.
, and
Warmiński
,
J.
,
1995
, “
Parametric Self-Excited Non-Linear System Vibrations Analysis with Inertial Excitation
,”
Int. J Non-Linear Mech.
,
30
(
2
), pp.
179
189
.
29.
Ramakrishnan
,
V.
, and
Feeny
,
B. F.
,
2012
, “
Resonances of a Forced Mathieu Equation with Reference to Wind Turbine Blades
,”
ASME J. Vib. Acoust.
,
134
(
6
), p.
064501
.
30.
Abou-Rayan
,
A.
,
Nayfeh
,
A.
,
Mook
,
D.
, and
Nayfeh
,
M.
,
1993
, “
Nonlinear Response of a Parametrically Excited Buckled Beam
,”
Nonlinear Dyn.
,
4
(
5
), pp.
499
525
.
31.
Patil
,
O.
,
2012
, “
Dynamics of Flexible Inverted Pendulum with Tip Mass on a Cart
, DDP Thesis,
S M Advanced Micro engineering Lab, Mechanical Engineering Department
,
IIT Bombay, Mumbai, India
.
32.
Sánchez-Mazuca
,
S.
, and
Campa
,
R.
,
2013
, “
An Improvement Proposal to the Static Friction Model
,”
Math. Probl. Eng.
2013
, pp.
1
8
.
This content is only available via PDF.
You do not currently have access to this content.