This paper investigates the dispersion behavior of elastic wave propagation in hierarchical honeycombs using the finite element method in conjunction with the Bloch's theorem. The hierarchical honeycomb is constructed by replacing each vertex of a regular hexagonal honeycomb with smaller hexagons stacked in a woodpile pattern. Band structure analysis reveals that, in the considered range of frequency, the maximum band gap for the hierarchical honeycomb is localized in the frequency corresponding to the natural vibration frequency of the cell strut, and moreover, the width of this particular gap is significantly broadened as the order of hierarchy increases. In addition, for the hierarchical honeycombs satisfying an invariable ratio between the thickness and squared length of the cell strut, which is extracted from the expression of the natural frequency of the simply supported element beam, a coincidence among dispersion curves (or contours) for the hierarchical configurations with the same scale order occurs. The resulting identical band gaps as well as the quasi-static phase wave velocities provide an advantage or the hierarchical honeycombs in the manipulation of vibration and associated multifunction designs.

References

References
1.
Hamm
,
C. E.
,
Merkel
,
R.
,
Springer
,
O.
,
Jurkojc
,
P.
,
Maier
,
C.
,
Prechtel
,
K.
, and
Smetacek
,
V.
,
2003
, “
Architecture and Material Properties of Diatom Shells Provide Effective Mechanical Protection
,”
Nature
,
421
(
6925
), pp.
841
843
.
2.
Zhang
,
Z. Q.
,
Zhang
,
Y. W.
, and
Gao
,
H. J.
,
2011
, “
On Optimal Hierarchy of Load-Bearing Biological Materials
,”
Proc. R. Soc. B: Biol. Sci.
,
278
(
1705
), pp.
519
525
.
3.
Buehler
,
M. J.
,
2006
, “
Nature Designs Tough Collagen: Explaining the Nanostructure of Collagen Fibrils
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
33
), pp.
12285
12290
.
4.
Fratzl
,
P.
, and
Weinkamer
,
R.
,
2007
, “
Nature’s Hierarchical Materials
,”
Prog. Mater. Sci.
,
52
(
8
), pp.
1263
1334
.
5.
Gibson
,
L. J.
,
2012
, “
The Hierarchical Structure and Mechanics of Plant Materials
,”
J. R. Soc. Interface
,
9
(
76
), pp.
2749
2766
.
6.
Lakes
,
R.
,
1993
, “
Materials With Structural Hierarchy
,”
Nature
,
361
(
6412
), pp.
511
515
.
7.
Bauer
,
J.
,
Meza
,
L. R.
,
Schaedler
,
T. A.
,
Schwaiger
,
R.
,
Zheng
,
X.
, and
Valdevit
,
L.
,
2017
, “
Nanolattices: An Emerging Class of Mechanical Metamaterials
,”
Adv. Mater.
,
29
(
40
), p.
1701850
.
8.
Compton
,
B. G.
, and
Lewis
,
J. A.
,
2014
, “
3D-Printing of Lightweight Cellular Composites
,”
Adv. Mater.
,
26
(
34
), pp.
5930
5935
.
9.
Jian
,
X.
,
Robert
,
M.
,
Ranajay
,
G.
,
Ashkan
,
V.
,
Li
,
M.
,
Arne
,
O.
,
Hans-Jurgen
,
C.
, and
Linzhi
,
W.
,
2014
, “
Advanced Micro-Lattice Materials
,”
Adv. Eng. Mater.
,
17
(
9
), pp.
1253
1264
.
10.
Lee
,
J.-H.
,
Singer
,
J. P.
, and
Thomas
,
E. L.
,
2012
, “
Micro-/Nanostructured Mechanical Metamaterials
,”
Adv. Mater.
,
24
(
36
), pp.
4782
4810
.
11.
Meza
,
L. R.
,
Das
,
S.
, and
Greer
,
J. R.
,
2014
, “
Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices
,”
Science
,
345
(
6202
), pp.
1322
1326
.
12.
Ma
,
Q.
, and
Zhang
,
Y. H.
,
2016
, “
Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111008
.
13.
Zheng
,
X.
,
Smith
,
W.
,
Jackson
,
J.
,
Moran
,
B.
,
Cui
,
H.
,
Chen
,
D.
,
Ye
,
J.
,
Fang
,
N.
,
Rodriguez
,
N.
,
Weisgraber
,
T.
, and
Spadaccini
,
C. M.
,
2016
, “
Multiscale Metallic Metamaterials
,”
Nat. Mater.
,
15
(
10
), pp.
1100
1106
.
14.
Gibson
,
L. J.
,
Ashby
,
M. F.
,
Schajer
,
G. S.
, and
Robertson
,
C. I.
,
1982
, “
The Mechanics of Two-Dimensional Cellular Materials
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
382
(
1782
), pp.
25
42
.
15.
Fleck
,
N. A.
,
Deshpande
,
V. S.
, and
Ashby
,
M. F.
,
2010
, “
Micro-Architectured Materials: Past, Present and Future
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
466
(
2121
), pp.
2495
2516
.
16.
Masters
,
I. G.
, and
Evans
,
K. E.
,
1996
, “
Models for the Elastic Deformation of Honeycombs
,”
Compos. Struct.
,
35
, pp.
403
422
.
17.
Prall
,
D.
, and
Lakes
,
R. S.
,
1997
, “
Properties of a Chiral Honeycomb With a Poisson’s Ratio of -1
,”
Int. J. Mech. Sci.
,
39
(
3
), pp.
305
314
.
18.
Phani
,
A. S.
,
Woodhouse
,
J.
, and
Fleck
,
N. A.
,
2006
, “
Wave Propagation in Two-Dimensional Periodic Lattices
,”
J. Acoust. Soc. Am.
,
119
(
4
), pp.
1995
2005
.
19.
Gonella
,
S.
, and
Ruzzene
,
M.
,
2008
, “
Analysis of In-Plane Wave Propagation in Hexagonal and Re-Entrant Lattices
,”
J. Sound Vib.
,
312
(
1–2
), pp.
125
139
.
20.
Trainiti
,
G.
,
Rimoli
,
J. J.
, and
Ruzzene
,
M.
,
2018
, “
Optical Evaluation of the Wave Filtering Properties of Graded Undulated Lattices
,”
J. Appl. Phys.
,
123
(
9
), p.
091706
.
21.
Sun
,
Y.
, and
Pugno
,
N. M.
,
2013
, “
In Plane Stiffness of Multifunctional Hierarchical Honeycombs with Negative Poisson’s Ratio Sub-Structures
,”
Compos. Struct.
,
106
, pp.
681
689
.
22.
Sun
,
Y.
,
Wang
,
B.
,
Pugno
,
N.
,
Wang
,
B.
, and
Ding
,
Q.
,
2015
, “
In-Plane Stiffness of the Anisotropic Multifunctional Hierarchical Honeycombs
,”
Composite Structures
,
131
, pp.
616
624
.
23.
Fan
,
H. L.
,
Jin
,
F. N.
, and
Fang
,
D. N.
,
2008
, “
Mechanical Properties of Hierarchical Cellular Materials. Part I: Analysis
,”
Compos. Sci. Technol.
,
68
(
15–16
), pp.
3380
3387
.
24.
Rayneau-Kirkhope
,
D.
,
Mao
,
Y.
, and
Farr
,
R.
,
2012
, “
Ultralight Fractal Structures From Hollow Tubes
,”
Phys. Rev. Lett.
,
109
(
20
), p.
204301
.
25.
Qiao
,
J.
, and
Chen
,
C.
,
2016
, “
In-plane Crushing of a Hierarchical Honeycomb
,”
Int. J. Solids Struct.
,
85–86
, pp.
57
66
.
26.
Fang
,
J.
,
Sun
,
G.
,
Qiu
,
N.
,
Pang
,
T.
,
Li
,
S.
, and
Li
,
Q.
,
2018
, “
On Hierarchical Honeycombs Under Out-of-Plane Crushing
,”
Int. J. Solids Struct.
,
135
, pp.
1
13
.
27.
Chen
,
Y.
,
Jia
,
Z.
, and
Wang
,
L.
,
2016
, “
Hierarchical Honeycomb Lattice Metamaterials With Improved Thermal Resistance and Mechanical Properties
,”
Compos. Struct.
,
152
, pp.
395
402
.
28.
Haghpanah
,
B.
,
Oftadeh
,
R.
,
Papadopoulos
,
J.
, and
Vaziri
,
A.
,
2013
, “
Self-Similar Hierarchical Honeycombs
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
469
(
2156
), pp.
1
19
.
29.
Ajdari
,
A.
,
Jahromi
,
B. H.
,
Papadopoulos
,
J.
,
Nayeb-Hashemi
,
H.
, and
Vaziri
,
A.
,
2012
, “
Hierarchical Honeycombs With Tailorable Properties
,”
Int. J. Solids Struct.
,
49
, pp.
1413
1419
.
30.
Oftadeh
,
R.
,
Haghpanah
,
B.
,
Papadopoulos
,
J.
,
Hamouda
,
A. M. S.
,
Nayeb-Hashemi
,
H.
, and
Vaziri
,
A.
,
2014
, “
Mechanics of Anisotropic Hierarchical Honeycombs
,”
Int. J. Mech. Sci.
,
81
, pp.
126
136
.
31.
Oftadeh
,
R.
,
Haghpanah
,
B.
,
Vella
,
D.
,
Boudaoud
,
A.
, and
Vaziri
,
A.
,
2014
, “
Optimal Fractal-Like Hierarchical Honeycombs
,”
Phys. Rev. Lett.
,
113
(
10
), p.
104301
.
32.
Xu
,
Y. L.
,
Chen
,
C. Q.
, and
Tian
,
X. G.
,
2013
, “
Wave Characteristics of Two-Dimensional Hierarchical Hexagonal Lattice Structures
,”
ASME J. Vib. Acoust.
,
136
(
1
), p.
011011
.
33.
Mousanezhad
,
D.
,
Babaee
,
S.
,
Ghosh
,
R.
,
Mahdi
,
E.
,
Bertoldi
,
K.
, and
Vaziri
,
A.
,
2015
, “
Honeycomb Phononic Crystals With Self-Similar Hierarchy
,”
Phys. Rev. B
,
92
(
10
), p.
104304
.
34.
Zhang
,
K.
,
Deng
,
Z. C.
,
Xu
,
X. J.
,
Hou
,
X. H.
, and
Meng
,
J. M.
,
2015
, “
Symplectic Analysis for Wave Propagation of Hierarchical Honeycomb Structures
,”
Acta Mech. Solida Sin.
,
28
(
3
), pp.
294
304
.
35.
Xia
,
B.
,
Li
,
L.
,
Liu
,
J.
, and
Yu
,
D.
,
2017
, “
Acoustic Metamaterial With Fractal Coiling Up Space for Sound Blocking in a Deep Subwavelength Scale
,”
ASME J. Vib. Acoust.
,
140
(
1
), p.
011011
.
36.
Liu
,
J.
,
Li
,
L.
,
Xia
,
B.
, and
Man
,
X.
,
2017
, “
Fractal Labyrinthine Acoustic Metamaterial in Planar Lattices
,”
Int. J. Solids Struct.
,
132-133
, pp.
20
30
.
37.
Brillouin
,
L.
,
1946
,
Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices
,
Dover Publications, Inc.
,
New York
.
38.
Timoshenko
,
S. P.
,
Young
,
D. H.
, and
Weaver
,
W.
,
1974
,
Vibration Problems in Engineering
,
4th ed.
,
Wiley, New York
.
39.
Zhu
,
Z.-W.
, and
Deng
,
Z.-C.
,
2016
, “
Identical Band Gaps in Structurally Re-Entrant Honeycombs
,”
J. Acoust. Soc. Am.
,
140
(
2
), pp.
898
907
.
You do not currently have access to this content.