In this study, a novel vibration isolator is presented. The presented isolator possesses the controllable stiffness and can be employed in vibration isolation at a low-resonance frequency. The controllable stiffness of the isolator is obtained by manipulating the negative stiffness-based current in a system with a positive and a negative stiffness in parallel. By using an electromagnetic device consisting of permanent magnetic rings and coils, the designed isolator shows that the stiffness can be manipulated as needed and the operational stiffness range is large in vibration isolation. We experimentally demonstrate that the modeling of controllable stiffness and the approximation of the negative stiffness expressions are effective for controlling the resonance frequency and the transmissibility of the vibration isolation system, enhancing applications such as warship stealth technology, vehicles suspension system, and active vibration isolator.

References

References
1.
Wen
,
G. L.
,
Lu
,
Y. Z.
,
Zhang
,
Z. Y.
,
Ma
,
C. S.
,
Yin
,
H. F.
, and
Cui
,
Z.
,
2009
, “
Line Spectra Reduction and Vibration Isolation Via Modified Projective Synchronization for Acoustic Stealth of Submarines
,”
J. Sound Vib.
,
324
(
3–5
), pp.
954
961
.
2.
Jeong
,
U. C.
,
Yoon
,
J. H.
,
Yang
,
I. H.
,
Jeong
,
J. E.
,
Kim
,
J. S.
,
Chung
,
K. H.
, and
Oh
,
J. E.
,
2013
, “
Magnetorheological Elastomer With Stiffness-Variable Characteristics Based on Induced Current Applied to Differential Mount of Vehicles
,”
Smart Mater. Struc.
,
22
(
11
), p.
115007
.
3.
Ibrahim
,
R. A.
,
2008
, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
(
3–5
), pp.
371
452
.
4.
Lou
,
J. J.
,
Zhu
,
S. J.
,
He
,
L.
, and
Yu
,
X.
,
2005
, “
Application of Chaos Method to Line Spectra Reduction
,”
J. Sound Vib.
,
286
(
3
), pp.
645
652
.
5.
Chao
,
C.
,
Li
,
X. K.
, and
Yang
,
S.
,
2014
, “
A Method of Detecting Line Spectrum of Ship-Radiated Noise Using a New Intermittent Chaotic Oscillator
,”
Acta Phys. Sin.
,
63
(
6
), p.
064301
.
6.
El Sherbiny
,
M. G.
, and
Placidi
,
L.
,
2018
, “
Discrete and Continuous Aspects of Some Metamaterial Elastic Structures With Band Gaps
,”
Arch. Appl. Mech.
,
88
(
10
), pp.
1725
1742
.
7.
Alabuzhev
,
P. M.
, and
Rivin
,
E. I.
,
1989
,
Vibration Protecting and Measuring Systems with Quasi-Zero Stiffness
,
Hemisphere Pub. Corp.
,
New York
.
8.
Carrella
,
A.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2007
, “
Static Analysis of a Passive Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
J. Sound Vib.
,
301
(
3–5
), pp.
678
689
.
9.
Carrella
,
A.
,
Brennan
,
M. J.
,
Kovacic
,
I.
, and
Waters
,
T. P.
,
2009
, “
On the Force Transmissibility of a Vibration Isolator With Quasi-Zero-Stiffness
,”
J. Sound Vib.
,
322
(
4–5
), pp.
707
717
.
10.
Kovacic
,
I.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2008
, “
A Study of a Nonlinear Vibration Isolator With a Quasi-Zero Stiffness Characteristic
,”
J. Sound Vib.
,
315
(
3
), pp.
700
711
.
11.
Lan
,
C.-C.
,
Yang
,
S.-A.
, and
Wu
,
Y.-S.
,
2014
, “
Design and Experiment of a Compact Quasi-Zero-Stiffness Isolator Capable of a Wide Range of Loads
,”
J. Sound Vib.
,
333
(
20
), pp.
4843
4858
.
12.
Hu
,
Z.
,
Wang
,
X.
,
Yao
,
H.
,
Wang
,
G.
, and
Zheng
,
G.
,
2018
, “
Theoretical Analysis and Experimental Identification of a Vibration Isolator With Widely-Variable Stiffness
,”
ASME J. Vib. Acoust.
,
140
(
5
), p.
051014
.
13.
Huang
,
X.
,
Liu
,
X.
,
Sun
,
J.
,
Zhang
,
Z.
, and
Hua
,
H.
,
2014
, “
Vibration Isolation Characteristics of a Nonlinear Isolator Using Euler Buckled Beam as Negative Stiffness Corrector: A Theoretical and Experimental Study
,”
J. Sound Vib.
,
333
(
4
), pp.
1132
1148
.
14.
Zhou
,
J.
,
Wang
,
X.
,
Xu
,
D.
, and
Bishop
,
S.
,
2015
, “
Nonlinear Dynamic Characteristics of a Quasi-Zero Stiffness Vibration Isolator With Cam–Roller–Spring Mechanisms
,”
J. Sound Vib.
,
346
, pp.
53
69
.
15.
Ishida
,
S.
,
Suzuki
,
K.
, and
Shimosaka
,
H.
,
2017
, “
Design and Experimental Analysis of Origami-Inspired Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
ASME J. Vib. Acoust.
,
139
(
5
), p.
051004
.
16.
Inamoto
,
K.
, and
Ishida
,
S.
,
2018
, “
Improved Feasible Load Range and Its Effect on the Frequency Response of Origami-Inspired Vibration Isolators With Quasi-Zero-Stiffness Characteristics
,”
ASME J. Vib. Acoust.
,
141
(
2
), p.
021004
.
17.
Carrella
,
A.
,
Brennan
,
M. J.
,
Waters
,
T. P.
, and
Shin
,
K.
,
2008
, “
On the Design of a High-Static–Low-Dynamic Stiffness Isolator Using Linear Mechanical Springs and Magnets
,”
J. Sound Vib.
,
315
(
3
), pp.
712
720
.
18.
Zheng
,
Y.
,
Zhang
,
X.
,
Luo
,
Y.
,
Yan
,
B.
, and
Ma
,
C.
,
2016
, “
Design and Experiment of a High-Static–Low-Dynamic Stiffness Isolator Using a Negative Stiffness Magnetic Spring
,”
J. Sound Vib.
,
360
, pp.
31
52
.
19.
Wu
,
W.
,
Chen
,
X.
, and
Shan
,
Y.
,
2014
, “
Analysis and Experiment of a Vibration Isolator Using a Novel Magnetic Spring With Negative Stiffness
,”
J. Sound Vib.
,
333
(
13
), pp.
2958
2970
.
20.
Zhou
,
N.
, and
Liu
,
K.
,
2010
, “
A Tunable High-Static–Low-Dynamic Stiffness Vibration Isolator
,”
J. Sound Vib.
,
329
(
9
), pp.
1254
1273
.
21.
Zhou
,
J.
,
Wang
,
K.
,
Xu
,
D.
,
Ouyang
,
H.
, and
Li
,
Y.
,
2017
, “
A Six Degrees-of-Freedom Vibration Isolation Platform Supported by a Hexapod of Quasi-Zero-Stiffness Struts
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
034502
.
22.
Wang
,
S.
,
Chen
,
Z.
,
Liu
,
X.
, and
Jiao
,
Y.
,
2018
, “
Feedforward Feedback Linearization Linear Quadratic Gaussian With Loop Transfer Recovery Control of Piezoelectric Actuator in Active Vibration Isolation System
,”
ASME J. Vib. Acoust.
,
140
(
4
), p.
041009
.
23.
Ravaud
,
R.
,
Lemarquand
,
G.
,
Babic
,
S.
,
Lemarquand
,
V.
, and
Akyel
,
C.
,
2010
, “
Cylindrical Magnets and Coils: Fields, Forces, and Inductances
,”
IEEE Trans. Magn.
,
46
(
9
), pp.
3585
3590
.
24.
Robertson
,
W.
,
Cazzolato
,
B.
, and
Zander
,
A.
,
2012
, “
Axial Force Between a Thick Coil and a Cylindrical Permanent Magnet: Optimizing the Geometry of an Electromagnetic Actuator
,”
IEEE Trans. Magn.
,
48
(
9
), pp.
2479
2487
.
25.
Robertson
,
W.
,
Cazzolato
,
B.
, and
Zander
,
A.
,
2011
, “
A Simplified Force Equation for Coaxial Cylindrical Magnets and Thin Coils
,”
IEEE Trans. Magn.
,
47
(
8
), pp.
2045
2049
.
26.
Harris
,
C. M.
, and
Piersol
,
A. G.
,
2002
,
Harris’ Shock and Vibration Handbook
, Vol.
5
,
McGraw-Hill
,
New York
.
This content is only available via PDF.
You do not currently have access to this content.