Abstract

Flexible manipulators are associated with merits such as low power consumption, use of small actuators, high-speed, and their low cost due to fewer materials’ requirements than their rigid counterparts. However, they suffer from link vibration which hinder the aforementioned merits from being realized. The limitations of link vibrations are time wastage, poor precision, and the possibility of failure due to vibration fatigue. This paper extends the vibration control mathematical foundation from a single link manipulator to a three-dimensional, two links flexible manipulator. The vibration control theory developed earlier feeds back a fraction of the link root strain to increase the system damping, thereby reducing the strain. This extension is supported by experimental results. Further improvements are proposed by tuning the right proportion of root strain to feed back, and the timing using artificial neural networks. The algorithm was implemented online in matlab interfaced with dSPACE for practical experiments. From the practical experiment done in consideration of a variable load, neural network tuned gains exhibited a better performance over those obtained using fixed feedback gains in terms of damping of both torsional and bending vibrations and tracking of joint angles.

References

1.
Morris
,
A.
, and
Madani
,
A.
,
1996
, “
Static and Dynamic Modelling of a Two-Flexible-Link Robot Manipulator
,”
Robotica
,
14
(
3
), pp.
289
300
.
2.
Lochan
,
K.
,
Roy
,
B. K.
, and
Subudhi
,
B.
,
2016
, “
A Review on Two-Link Flexible Manipulators
,”
Annu. Rev. Control
,
42
, pp.
346
367
.
3.
Subudhi
,
B.
, and
Morris
,
A.
,
2002
, “
Dynamic Modelling, Simulation and Control of a Manipulator with Flexible Links and Joints
,”
Rob. Auton. Syst.
,
41
(
4
), pp.
257
270
.
4.
Lotfazar
,
A.
,
Eghtesad
,
M.
, and
Najafi
,
A.
,
2008
, “
Vibration Control and Trajectory Tracking for General In-Plane Motion of an Euler–Bernoulli Beam Via Two-Time Scale and Boundary Control Methods
,”
ASME J. Vib. Acoust.
,
130
(
5
), p.
051009
.
5.
Lotfazar
,
A.
,
Eghtesad
,
M.
, and
Najafi
,
A.
,
2009
, “
Exponential Stabilization of Transverse Vibration and Trajectory Tracking for General In-Plane Motion of an Euler–Bernoulli Beam Via Two-Time Scale and Boundary Control Methods
,”
ASME J. Vib. Acoust.
,
131
(
5
), p.
054503
.
6.
Tso
,
S.
,
Yang
,
T.
,
Xu
,
W.
, and
Sun
,
Z.
,
2003
, “
Vibration Control for a Flexible-Link Robot Arm With Deflection Feedback
,”
Int. J. Non. Linear. Mech.
,
38
(
1
), pp.
51
62
.
7.
Njeri
,
W.
,
Sasaki
,
M.
, and
Matsushita
,
K.
,
2018
, “
Enhanced Vibration Control of a Multilink Flexible Manipulator Using Filtered Inverse Controller
,”
ROBOMECH J.
,
5
(
1
), p.
28
.
8.
Luo
,
Z. H.
,
1993
, “
Direct Strain Feedback Control of Flexible Robot Arms: New Theoretical and Experimental Results
,”
IEEE Trans. Automat. Contr.
,
38
(
11
), pp.
1610
1622
.
9.
Zhang
,
X.
,
Xu
,
W.
, and
Nair
,
S.
,
2004
, “
Comparison of Some Modeling and Control Issues for a Flexible Two Link Manipulator
,”
ISA Trans.
,
43
(
4
), pp.
509
525
.
10.
Hattori
,
M.
,
Tadokoro
,
S.
, and
Takamori
,
T.
,
1996
, “
A Generalization of Direct Strain Feedback Control for a Flexible Structure with Spatially Varying Parameters and a Tip Body
,”
Trans. Inst. Syst. Control Inf. Eng.
,
9
(
12
), pp.
606
608
.
11.
Ge
,
S. S.
,
Lee
,
T. H.
, and
Zhu
,
G.
,
1998
, “
Improving Regulation of a Single-Link Flexible Manipulator with Strain Feedback
,”
IEEE Trans. Rob. Autom.
,
14
(
1
), pp.
179
185
.
12.
Lee
,
T.
,
Ge
,
S.
, and
Wang
,
Z.
,
2001
, “
Adaptive Robust Controller Design for Multi-Link Flexible Robots
,”
Mechatronics
,
11
(
8
), pp.
951
967
.
13.
Luo
,
Z. H.
, and
Sakawa
,
Y.
,
1993
, “
Gain Adaptive Direct Strain Feedback Control of Flexible Robot Arms
,”
1993 IEEE Region 10 Conference on Proceedings Computer
,
Beijing, China
.
14.
Yang
,
S. M.
, and
Lee
,
G. S.
,
1997
, “
Vibration Control of Smart Structures by Using Neural Networks
,”
ASME J. Dyn. Sys. Meas. Control
,
119
(
1
), pp.
34
39
.
15.
Li
,
M.
,
Wu
,
H.
,
Wang
,
Y.
,
Handroos
,
H.
, and
Carbone
,
G.
,
2017
, “
Modified Levenberg–Marquardt Algorithm for Backpropagation Neural Network Training in Dynamic Model Identification of Mechanical Systems
,”
ASME J. Dyn. Sys. Meas. Control
,
139
(
3
), p.
031012
.
16.
Sasaki
,
M.
,
Shimizu
,
T.
,
Inoue
,
Y.
, and
Book
,
W. J.
,
2012
, “
Self-Tuning Vibration Control of a Rotational Flexible Timoshenko Arm Using Neural Networks
,”
Adv. Acoust. Vib.
,
2012
, pp.
1
7
.
17.
Altay
,
A.
,
Ozkan
,
O.
, and
Kayakutlu
,
G.
,
2019
, “
Prediction of Aircraft Failure Times Using Artificial Neural Networks and Genetic Algorithms
,”
J. Aircr.
,
51
(
1
), pp.
47
53
.
18.
Narendra
,
K. S.
, and
Parthasarathy
,
K.
,
1991
, “
Gradient Methods for the Optimization of Dynamical Systems Containing Neural Networks
,”
IEEE Trans. Neural Networks
,
2
(
2
), pp.
252
262
.
19.
Jafari
,
R.
, and
Dhaouadi
,
R.
,
2011
, “Adaptive PID Control of a Nonlinear Servomechanism Using Recurrent Neural Networks,”
Adv. Reinforcement Learning
,
A.
Mellouk
, ed.,
IntechOpen
,
London, UK
, pp.
275
296
.
20.
Mansour
,
T.
,
Konno
,
A.
, and
Uchiyama
,
M.
,
2012
, “Neural Network based Tuning Algorithm for MPID Control”.
PID Control, Implementation and Tuning
,
T.
Mansour
, ed.,
IntechOpen
.
21.
Ripamonti
,
F.
,
Orsini
,
L.
, and
Resta
,
F.
,
2017
, “
A Nonliear Sliding Surface in Sliding Mode Control to Reduce Vibrations of a Three-Link Flexible Manipulator
,”
ASME J. Vib. Acoust.
,
139
(
5
), p.
051005
.
22.
Karkoub
,
M.
, and
Tamma
,
K.
,
2001
, “
Modelling and Mu-Synthesis Control of Flexible Manipulators
,”
Comput. Struct.
,
79
(
5
), pp.
543
551
.
23.
Karkoub
,
M.
,
Balas
,
G.
,
Tamma
,
K.
, and
Donath
,
M.
,
2000
, “
Robust Control of Flexible Manipulators Via Mu-Synthesis
,”
Control Eng. Pract.
,
8
(
7
), pp.
725
734
.
24.
Bian
,
Y.
,
Gao
,
Z.
,
Lv
,
X.
, and
Fan
,
M.
,
2018
, “
Theoretical and Experimental Study on Vibration Control of Flexible Manipulator based on Internal Resonance
,”
J. Vib. Control
,
24
(
15
), pp.
3321
3337
.
25.
Li
,
W.
,
Luo
,
B.
, and
Huang
,
H.
,
2016
, “
Active Vibration Control of Flexible Joint Manipulator using Input Shaping and Adaptive Parameter Auto Disturbance Rejection Controller
,”
J. Sound. Vib.
,
363
, pp.
97
125
.
26.
Liu
,
Z.
,
Liu
,
J.
, and
He
,
W.
,
2017
, “
Partial Differential Equation Boundary Control of a Flexible Manipulator with Input Saturation
,”
Int. J. Syst. Sci.
,
48
(
1
), pp.
53
62
.
27.
Nakamura
,
R.
,
Sasaki
,
M.
,
Takeuchi
,
T.
, and
Ito
,
S.
,
2014
, “
Torsional Vibration Control of a Flexible Manipulator
,”
J. Jpn. Soc. Appl. Electromagnetics Mech.
,
22
(
2
), pp.
261
267
.
28.
Matsuno
,
F.
, and
Endo
,
T.
,
2004
, “
Dynamics Based Control of Two-Link Flexible Arm
,”
The 8th IEEE International Workshop on Advanced Motion Control
,
Kawasaki, Japan
.
You do not currently have access to this content.