A combined theoretical and numerical study is carried out to quantify the influence of material properties (e.g., real part and loss factor of Young’s modulus, material density) and geometrical parameters (e.g., layer thickness, height of hole) on the sound absorption performance of an underwater rubber layer containing periodically distributed axial holes. A theoretical model is developed based on the method of transfer matrix as well as the concept of equivalent layering of holes with variable cross section. Numerical simulations with the method of finite elements are subsequently carried out to validate the theoretical model, with good agreement achieved. Physical mechanisms underlying the enhanced acoustic performance of the anechoic layer as a result of introducing the periodic holes are explored in terms of the generated transverse waves and the high-order mode of vibration. The results presented are helpful for designing high-performance underwater acoustic layers with periodically distributed cavities by tailoring relevant material properties and geometrical parameters.

References

1.
Kim
,
B.-S.
,
Cho
,
S.-J.
,
Min
,
D.-k.
, and
Park
,
J.
,
2016
, “
Experimental Study for Improving Sound Absorption of a Composite Helical-Shaped Porous Structure Using Carbon Fiber
,”
Compos. Struct.
,
145
, pp.
242
247
.
2.
Ogam
,
E.
,
Fellah
,
Z. E. A.
, and
Ogam
,
G.
,
2016
, “
Identification of the Mechanical Moduli of Closed-Cell Porous Foams Using Transmitted Acoustic Waves in Air and the Transfer Matrix Method
,”
Compos. Struct.
,
135
, pp.
205
216
.
3.
Ren
,
S.
,
Ao
,
Q.
,
Meng
,
H.
,
Xin
,
F.
,
Huang
,
L.
,
Zhang
,
C.
, and
Lu
,
T. J.
,
2017
, “
A Semi-Analytical Model for Sound Propagation in Sintered Fiber Metals
,”
Compos. Part B- Eng.
,
126
, pp.
17
26
.
4.
Xin
,
F. X.
, and
Lu
,
T. J.
,
2016
, “
Acoustomechanical Constitutive Theory for Soft Materials
,”
Acta Mech. Sin.
,
32
(
5
), pp.
828
840
.
5.
Blake
,
F. G.
,
1952
, “
Spherical Wave Propagation in Solid Media
,”
J. Acoust. Soc. Am.
,
24
(
2
), pp.
211
214
.
6.
Meyer
,
E.
,
Brendel
,
K.
, and
Tamm
,
K.
,
1958
, “
Pulsation Oscillations of Cavities in Rubber
,”
J. Acoust. Soc. Am.
,
30
(
12
), pp.
1116
1124
.
7.
White
,
R. M.
,
1957
, “
Radiation Impedance of a Cylindrical Bore in a Solid
,”
J. Acoust. Soc. Am.
,
29
(
6
), pp.
751
752
.
8.
Gaunaurd
,
G.
,
1985
, “
Comments on ‘Absorption Mechanisms for Waterborne Sound in Alberich Anechoic Layers’
,”
Ultrasonics
,
23
(
2
), pp.
90
91
.
9.
Lane
,
R.
,
1981
, “
Absorption Mechanisms for Waterborne Sound in Alberich Anechoic Layers
,”
Ultrasonics
,
19
(
1
), pp.
28
30
.
10.
Cervenka
,
P.
, and
Challande
,
P.
,
1991
, “
A New Efficient Algorithm to Compute the Exact Reflection and Transmission Factors for Plane Waves in Layered Absorbing Media (Liquids and Solids)
,”
J. Acoust. Soc. Am.
,
89
(
4
), pp.
1579
1589
.
11.
Liang
,
G.
, and
Pang
,
F.
,
2013
, “
Acoustic Characteristics of Underwater Composite Materials at Oblique Incidence of Sound Wave
,”
Noise Vib. Worldw.
,
44
(
5
), pp.
12
17
.
12.
Sinha
,
B. K.
,
Plona
,
T. J.
,
Kostek
,
S.
, and
Chang
,
S.-K.
,
1992
, “
Axisymmetric Wave Propagation in Fluid-Loaded Cylindrical Shells. I: Theory
,”
J. Acoust. Soc. Am.
,
92
(
2
), pp.
1132
1143
.
13.
Tao
,
M.
,
2014
, “
Simplified Model for Predicting Acoustic Performance of an Underwater Sound Absorption Coating
,”
J. Vib. Control
,
20
(
3
), pp.
339
354
.
14.
Xin
,
F.
, and
Lu
,
T. J.
,
2017
, “
A Plane Strain Elasticity Model for the Acoustical Properties of Rib-Stiffened Composite Plates
,”
Eur. J. Mech.-A/Solids
,
62
, pp.
1
13
.
15.
Xin
,
F. X.
,
2015
, “
Signal Response of Rib-Stiffened Plates Covered by Decoupling Coating Layers
,”
J. Sound Vib.
,
348
, pp.
206
223
.
16.
Xin
,
F. X.
,
2015
, “
An Exact Elasticity Model for Rib-Stiffened Plates Covered by Decoupling Acoustic Coating Layers
,”
Compos. Struct.
,
119
, pp.
559
567
.
17.
Hladky-Hennion
,
A.-C.
, and
Decarpigny
,
J.-N.
,
1991
, “
Analysis of the Scattering of a Plane Acoustic Wave by a Doubly Periodic Structure Using the Finite Element Method: Application to Alberich Anechoic Coatings
,”
J. Acoust. Soc. Am.
,
90
(
6
), pp.
3356
3367
.
18.
Easwaran
,
V.
, and
Munjal
,
M. L.
,
1993
, “
Analysis of Reflection Characteristics of a Normal Incidence Plane Wave on Resonant Sound Absorbers: A Finite Element Approach
,”
J. Acoust. Soc. Am.
,
93
(
3
), pp.
1308
1318
.
19.
Panigrahi
,
S. N.
,
Jog
,
C. S.
, and
Munjal
,
M. L.
,
2008
, “
Multi-Focus Design of Underwater Noise Control Linings Based on Finite Element Analysis
,”
Appl. Acoust.
,
69
(
12
), pp.
1141
1153
.
20.
Achenbach
,
J. D.
,
1973
,
Wave Propagation in Elastic Solids
,
North-Holland Publishing Company
,
Amsterdam, London
.
21.
Olny
,
X.
, and
Boutin
,
C.
,
2003
, “
Acoustic Wave Propagation in Double Porosity Media
,”
J. Acoust. Soc. Am.
,
114
(
1
), pp.
73
89
.
You do not currently have access to this content.