This paper concentrates on the random vibration suppression of a regular straight beam by using an inerter-based dynamic vibration absorber. For a wideband random point-driven straight beam with an inerter-based dynamic vibration absorber, the distribution of mean-square velocity response along the axis of the straight beam as well as the mean kinetic energy of the whole beam are first analytically derived through the classical linear random vibration theory. Two optimization objectives are established to determine the optimal design parameters: (1) minimizing the maximal mean-square velocity along the axis of the straight beam, which corresponds to the maximal mean kinetic energy density along the axis and (2) minimizing the mean kinetic energy of the whole beam. Numerical search gives the optimal location and the associated optimal parameters of the inerter-based dynamic vibration absorber. Numerical results for a simply supported straight beam illustrate the better performance of an inerter-based dynamic vibration absorber than a traditional dynamic vibration absorber. Parametric sensitivity studies for the robustness analysis of the beam response to deviations from the optimal parameters are conducted. The optimal location locates on the force-excited point, while the suboptimal location locates on its symmetry position. Furthermore, the optimal and suboptimal locations remain invariable regardless of the upper cutoff frequency of band-limited noise, which is fairly important to the location optimization of the inerter-based dynamic vibration absorber.

References

References
1.
Crandall
,
S. H.
, and
Wittig
,
L. E.
,
1972
, “Chladni’s Patterns for Random Vibration of a Plate,”
Dynamic Response of Structures
,
G.
Herrmann
, and
N.
Perrone
, eds.,
Pergamon Press
,
New York
.
2.
Crandall
,
S. H.
,
1977
, “Structured Response Patterns Due to Wide-Band Random Excitation,”
Stochastic Problems in Dynamics
,
B. K.
Clarkson
, ed.,
Pitman Publishing
,
London
.
3.
Itao
,
K.
, and
Crandall
,
S. H.
,
1978
, “
Wide-Band Random Vibration of Circular Plates
,”
ASME J. Mech. Des.
,
100
, pp.
690
695
.
4.
Elishakoff
,
I.
,
van Zanten
,
A. T.
, and
Crandall
,
S. H.
,
1979
, “
Wide-Band Random Axisymmetric Vibration of Cylindrical Shells
,”
ASME J. Appl. Mech.
,
46
, pp.
417
423
.
5.
Crandall
,
S. H.
,
1979
, “
Random Vibration of One- and Two-Dimensional Structures
,”
Developments in Statistics
,
R. P.
Krishnaiah
, ed.,
Academic Press
,
New York
.
6.
Davies
,
H. G.
, and
Khandoker
,
S. I.
,
1982
, “
Random Point Excitation of Coupled Beams
,”
J. Sound Vib.
,
84
(
4
), pp.
557
562
.
7.
Elishakoff
,
I.
, and
Ducreux
,
B.
,
2014
, “
Dramatic Effect of Cross-Correlations in Random Vibration of Point-Driven Spherically Curved Panel
,”
Arch. Appl. Mech.
,
84
, pp.
473
490
.
8.
Elishakoff
,
I.
, and
Santoro
,
R.
,
2014
, “
Random Vibration of a Point-Driven Two-Span Beam on an Elastic Foundation
,”
Arch. Appl. Mech.
,
84
, pp.
355
374
.
9.
Ying
,
Z. G.
,
Ni
,
Y. Q.
, and
Huan
,
R. H.
,
2018
, “
Vibration Response Characteristics of Quasi-Periodic Sandwich Beam With Magnetorheological Visco-Elastomer Core Under Random Support Excitations
,”
ASME J. Vib. Acoust.
,
140
(
5
), p.
051017
.
10.
Luan
,
X. L.
,
Wang
,
Y.
,
Jin
,
X. L.
, and
Huang
,
Z. L.
,
2017
, “
Optimal Locations of Piezoelectric Patch on Wideband Random Point-Driven Beam for Vibration Energy Harvesting Application
,”
ASME J. Vib. Acoust.
,
140
(
1
), p.
011014
.
11.
Den Hartog
,
J. P.
,
1985
,
Mechanical Vibrations
,
Dover Publication Inc.
,
New York
.
12.
Pai
,
P. F.
, and
Schulz
,
M. J.
,
2000
, “
A Refined Nonlinear Vibration Absorber
,”
Int. J. Mech. Sci.
,
42
, pp.
537
560
.
13.
Li
,
H. N.
, and
Li
,
X. L.
,
2009
, “
Experiment and Analysis of Torsional Seismic Responses for Asymmetric Structures With Semi-Active Control by MR Dampers
,”
Smart Mater. Struct.
,
18
,
075007
.
14.
Bekdas
,
G.
, and
Nigdeli
,
S. M.
,
2013
, “
Mass Ratio Factor for Optimum Tuned Mass Damper Strategies
,”
Int. J. Mech. Sci.
,
71
, pp.
68
84
.
15.
Jacquot
,
R. G.
,
2003
, “
The Spatial Average Mean Square Motion as an Objective Function for Optimizing Damping in Damped Modified Systems
,”
J. Sound Vib.
,
259
(
4
), pp.
955
965
.
16.
Noori
,
B.
, and
Farshidianfar
,
A.
,
2013
, “
Optimum Design of Dynamic Vibration Absorbers for a Beam, Based on H∞ and H2 Optimization
,”
Arch. Appl. Mech.
,
83
, pp.
1773
1787
.
17.
Jacquot
,
R. G.
,
2004
, “
Optimal Damper Location for Randomly Forced Cantilever Beams
,”
J. Sound Vib.
,
269
(
3–5
), pp.
623
632
.
18.
Younesian
,
D.
,
Esmailzadeh
,
E.
, and
Sedaghaati
,
R.
,
2006
, “
Passive Vibration Control of Beams Subjected to Random Excitations With Peaked PSD
,”
J. Vib. Control
,
12
(
9
), pp.
941
953
.
19.
Yang
,
F.
,
Sedaghati
,
R.
, and
Esmailzadeh
,
E.
,
2009
, “
Optimal Vibration Suppression of Timoshenko Beam With Tuned-Mass-Damper Using Finite Element Method
,”
ASME J. Vib. Acoust.
,
131
(
3
), p.
031006
.
20.
Tso
,
M. H.
,
Yuan
,
J.
, and
Wong
,
W. O.
,
2012
, “
Suppression of Random Vibration in Flexible Structures Using a Hybrid Vibration Absorber
,”
J. Sound Vib.
,
331
, pp.
974
986
.
21.
Cheung
,
Y. L.
,
Wong
,
W. O.
, and
Cheng
,
L.
,
2012
, “
Minimization of the Mean Square Velocity Response of Dynamic Structures Using an Active-Passive Dynamic Vibration Absorber
,”
J. Acoust. Soc. Am.
,
132
(
1
), pp.
197
207
.
22.
Cheung
,
Y. L.
,
Wong
,
W. O.
, and
Cheng
,
L.
,
2013
, “
Optimization of a Hybrid Vibration Absorber for Vibration Control of Structures Under Random Force Excitation
,”
J. Sound Vib.
,
332
, pp.
494
509
.
23.
Smith
,
M. C.
,
2002
, “
Synthesis of Mechanical Networks: The Inerter
,”
IEEE Trans. Autom. Control
,
47
(
10
), pp.
1648
1662
.
24.
Chen
,
M. Z. Q.
,
Papageorgiou
,
C.
,
Scheibe
,
F.
,
Wang
,
F. C.
, and
Smith
,
M. C.
,
2009
, “
The Missing Mechanical Circuit Element
,”
IEEE Circ. Syst. Mag.
,
9
(
1
), pp.
10
26
.
25.
Smith
,
M. C.
, and
Wang
,
F. C.
,
2004
, “
Performance Benefits in Passive Vehicle Suspensions Employing Inerters
,”
Veh. Syst. Dyn.
,
42
(
4
), pp.
235
257
.
26.
Evangelou
,
S.
,
Limebeer
,
D. J. N.
,
Sharp
,
R. S.
, and
Smith
,
M. C.
,
2007
, “
Mechanical Steering Compensator for High-Performance Motorcycles
,”
ASME J. Appl. Mech.
,
74
(
2
), pp.
332
346
.
27.
Hu
,
Y.
,
Chen
,
M. Z. Q.
,
Shu
,
Z.
, and
Huang
,
L.
,
2015
, “
Analysis and Optimisation for Inerter-Based Isolators Via Fixed-Point Theory and Algebraic Solution
,”
J. Sound Vib.
,
346
, pp.
17
36
.
28.
Hu
,
Y.
, and
Chen
,
M. Z. Q.
,
2015
, “
Performance Evaluation for Inerter-Based Dynamic Vibration Absorbers
,”
Int. J. Mech. Sci.
,
99
, pp.
297
307
.
29.
Wen
,
Y.
,
Chen
,
Z.
, and
Hua
,
X.
,
2017
, “
Design and Evaluation of Tuned Inerter-Based Dampers for the Seismic Control of MDOF Structures
,”
J. Struct. Eng.
,
143
(
4
),
04016207
.
30.
Javidialesaadi
,
A.
, and
Wierschem
,
N. E.
,
2018
, “
Three-Element Vibration Absorber-Inerter for Passive Control of Single-Degree-of-Freedom Structures
,”
ASME J. Vib. Acoust.
,
140
(
6
), p.
061007
.
31.
Hu
,
Y.
,
Chen
,
M. Z. Q.
, and
Shu
,
Z.
,
2014
, “
Passive Vehicle Suspensions Employing Inerters With Multiple Performance Requirements
,”
J. Sound Vib.
,
333
, pp.
2212
2225
.
32.
Zhang
,
S. Y.
,
Jiang
,
J. Z.
, and
Neild
,
S.
,
2017
, “
Optimal Configurations for a Linear Vibration Suppression Device in a Multi-Storey Building
,”
Struct. Control Health Monit.
,
24
,
e1887
.
33.
Shen
,
Y.
,
Chen
,
L.
,
Yang
,
X.
,
Shi
,
D.
, and
Yang
,
J.
,
2016
, “
Improved Design of Dynamic Vibration Absorber by Using the Inerter and Its Application in Vehicle Suspension
,”
J. Sound Vib.
,
361
, pp.
148
158
.
34.
Marian
,
L.
, and
Giaralis
,
A.
,
2014
, “
Optimal Design of a Novel Tuned Mass-Damper-Inerter (TMDI) Passive Vibration Control Configuration for Stochastically Support-Excited Structural Systems
,”
Probab. Eng. Mech.
,
38
, pp.
156
164
.
35.
Masri
,
S. F.
, and
Caffrey
,
J. P.
,
2017
, “
Transient Response of a SDOF System With an Inerter to Nonstationary Stochastic Excitation
,”
ASME J. Appl. Mech.
,
84
(
4
), p.
041005
.
36.
Pietrosanti
,
D.
,
De Angelis
,
M.
, and
Basili
,
M.
,
2017
, “
Optimal Design and Performance Evaluation of Systems With Tuned Mass Damper Inerter (TMDI)
,”
Earthq. Eng. Struct. Dyn.
,
46
, pp.
1367
1388
.
37.
Giaralis
,
A.
, and
Taflanidis
,
A. A.
,
2018
, “
Optimal Tuned Mass-Damper-Inerter (TMDI) Design for Seismically Excited MDOF Structures With Model Uncertainties Based on Reliability Criteria
,”
Struct. Control Health Monit.
,
25
(
2
),
e2082
.
38.
De Domenico
,
D.
, and
Ricciardi
,
G.
,
2018
, “
Optimal Design and Seismic Performance of Tuned Mass Damper Inerter (TMDI) for Structures With Nonlinear Base Isolation Systems
,”
Earthq. Eng. Struct. Dyn.
,
47
(
12
), pp.
2539
2560
.
39.
Javidialesaadi
,
A.
, and
Wierschem
,
N. E.
,
2018
, “
Optimal Design of Rotational Inertial Double Tuned Mass Dampers Under Random Excitation
,”
Eng. Struct.
,
165
, pp.
412
421
.
40.
Jin
,
X. L.
,
Chen
,
M. Z. Q.
, and
Huang
,
Z. L.
,
2016
, “
Minimization of the Beam Response Using Inerter-Based Passive Vibration Control Configurations
,”
Int. J. Mech. Sci.
,
119
, pp.
80
87
.
41.
Timoshenko
,
S.
,
1940
,
Strength of Materials
,
D. Van Nostrand Company, Inc.
,
New York
.
This content is only available via PDF.
You do not currently have access to this content.