Graphene has been known to possess exceptional mechanical properties, including its extremely high Young’s modulus and atomic layer thickness. Although there are several reported fiber optic pressure sensors using graphene film, a key question that is not well understood is how the suspended graphene film interacts with the backing air cavity and affects the sensor performance. Based on our previous analytical model, we will show that the sensor performance suffers due to the significantly reduced mechanical sensitivity by the backing cavity. To remedy this limitation, we will, through experimental and numerical methods, investigate two approaches to enhance the sensitivity of fiber optic acoustic pressure sensors using graphene film. First, a graphene–silver composite diaphragm is used to enhance the optical sensitivity by increasing the reflectivity. Compared with a sensor with pure graphene diaphragm, graphene–silver composite can enhance the sensitivity by threefold, while the mechanical sensitivity is largely unchanged. Second, a fiber optic sensor is developed with enlarged backing air volume through the gap between an optical fiber and a silica capillary tube. Experimental results show that the mechanical sensitivity is increased by 10× from the case where the gap side space is filled. For both approaches, signal-to-noise ratio (SNR) is improved due to the enhanced sensitivity, and comsol Thermoviscous acoustics simulation compares well with the experimental results. This study is expected to not only enhance the understanding of fluid–structural interaction in sensor design but also benefit various applications requiring high-performance miniature acoustic sensors.

References

References
1.
Lee
,
C.
,
Wei
,
X.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
.
2.
Balandin
,
A. A.
,
Ghosh
,
S.
,
Bao
,
W.
,
Calizo
,
I.
,
Teweldebrhan
,
D.
,
Miao
,
F.
, and
Lau
,
C. N.
,
2008
, “
Superior Thermal Conductivity of Single-Layer Graphene
,”
Nano Lett.
,
8
(
3
), pp.
902
907
.
3.
Castro Neto
,
A.H.
,
Guinea
,
F.
,
Peres
,
N. M. R.
,
Novoselov
,
K. S.
, and
Geim
,
A. K.
,
2009
, “
The Electronic Properties of Graphene
,”
Rev. Mod. Phys.
81
(
1
), pp.
109
162
.
4.
Loh
,
K. P.
,
Bao
,
Q.
,
Ang
,
P. K.
, and
Yang
,
J.
,
2010
, “
The Chemistry of Graphene
,”
J. Mater. Chem.
,
20
(
12
),
2277
2289
.
5.
Novoselov
,
K. S.
,
Jiang
,
D.
,
Schedin
,
F.
,
Booth
,
T. J.
,
Khotkevich
,
V. V.
,
Morozov
,
S. V.
, and
Geim
,
A. K.
,
2005
, “
Two-Dimensional Atomic Crystals
,”
Proc. Natl Acad. Sci. U.S.A.
,
102
(
30
), pp.
10451
10453
.
6.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D.
,
Zhang
,
Y.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
, and
Firsov
,
A. A.
,
2004
, “
Electric Field Effect in Atomically Thin Carbon Films
,”
Science
,
306
(
5696
), pp.
666
669
.
7.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D.
,
Katsnelson
,
M. I.
,
Grigorieva
,
I. V.
,
Dubonos
,
S. V.
, and
Firsov
,
A. A.
,
2005
, “
Two-Dimensional Gas of Massless Dirac Fermions in Graphene
,”
Nature
,
438
(
7065
), pp.
197
200
.
8.
Kahng
,
Y. H.
,
Lee
,
S.
,
Park
,
W.
,
Jo
,
G.
,
Choe
,
M.
,
Lee
,
J.-H.
,
Yu
,
H.
,
Lee
,
T.
, and
Lee
,
K.
,
2012
, “
Thermal Stability of Multilayer Graphene Films Synthesized by Chemical Vapor Deposition and Stained by Metallic Impurities
,”
Nanotechnology
,
23
(
7
),
075702
.
9.
Kim
,
K.
,
Regan
,
W.
,
Geng
,
B.
,
Alemán
,
B.
,
Kessler
,
B. M.
,
Wang
,
F.
,
Crommie
,
M. F.
, and
Zettl
,
A.
,
2010
, “
High-Temperature Stability of Suspended Single-Layer Graphene
,”
Phys. Status Solidi (RRL) - Rapid Res. Lett.
,
4
(
11
), pp.
302
304
.
10.
Hernandez
,
Y.
,
Nicolosi
,
V.
,
Lotya
,
M.
,
Blighe
,
F. M.
,
Sun
,
Z.
,
De
,
S.
,
McGovern
,
I. T.
,
Holland
,
B.
,
Byrne
,
M.
,
Gun’Ko
,
Y. K.
,
Boland
,
J. J.
,
Niraj
,
P.
,
Duesberg
,
G.
,
Krishnamurthy
,
S.
,
Goodhue
,
R.
,
Hutchison
,
J.
,
Scardaci
,
V.
,
Ferrari
,
A. C.
, and
Coleman
,
J. N.
,
2008
, “
High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite
,”
Nat. Nanotechnol.
,
3
(
9
), pp.
563
568
.
11.
Li
,
X.
,
Cai
,
W.
,
An
,
J.
,
Kim
,
S.
,
Nah
,
J.
,
Yang
,
D.
,
Piner
,
R.
,
Velamakanni
,
A.
,
Jung
,
I.
,
Tutuc
,
E.
,
Banerjee
,
S. K.
,
Colombo
,
L.
, and
Ruoff
,
R. S.
,
2009
, “
Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils
,”
Science
,
324
(
5932
), pp.
1312
1314
.
12.
Reina
,
A.
,
Jia
,
X.
,
Ho
,
J.
,
Nezich
,
D.
,
Son
,
H.
,
Bulovic
,
V.
,
Dresselhaus
,
M. S.
, and
Kong
,
J.
,
2009
, “
Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition
,”
Nano Lett.
,
9
(
1
), pp.
30
35
.
13.
Chen
,
X.-D.
,
Liu
,
Z.-B.
,
Zheng
,
C.-Y.
,
Xing
,
F.
,
Yan
,
X.-Q.
,
Chen
,
Y.
, and
Tian
,
J.-G.
,
2013
, “
High-Quality and Efficient Transfer of Large-Area Graphene Films onto Different Substrates
,”
Carbon
,
56
, pp.
271
278
.
14.
Li
,
X.
,
Zhu
,
Y.
,
Cai
,
W.
,
Borysiak
,
M.
,
Han
,
B.
,
Chen
,
D.
,
Piner
,
R. D.
,
Colombo
,
L.
, and
Ruoff
,
R. S.
,
2009
, “
Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes
,”
Nano Lett.
,
9
(
12
), pp.
4359
4363
.
15.
Lock
,
E. H.
,
Baraket
,
M.
,
Laskoski
,
M.
,
Mulvaney
,
S. P.
,
Lee
,
W. K.
,
Sheehan
,
P. E.
,
Hines
,
D. R.
,
Robinson
,
J. T.
,
Tosado
,
J.
,
Fuhrer
,
M. S.
,
Hernández
,
S. C.
, and
Walton
,
S. G.
,
2012
, “
High-Quality Uniform Dry Transfer of Graphene to Polymers
,”
Nano Lett.
,
12
(
1
), pp.
102
107
.
16.
Suk
,
J. W.
,
Kitt
,
A.
,
Magnuson
,
C. W.
,
Hao
,
Y.
,
Ahmed
,
S.
,
An
,
J.
,
Swan
,
A. K.
,
Goldberg
,
B. B.
, and
Ruoff
,
R. S.
,
2011
, “
Transfer of CVD-Grown Monolayer Graphene Onto Arbitrary Substrates
,”
ACS Nano
,
5
(
9
), pp.
6916
6924
.
17.
Geim
,
A. K.
,
2009
, “
Graphene: Status and Prospects
,”
Science
,
324
(
5934
), pp.
1530
1534
.
18.
Geim
,
A. K.
, and
Novoselov
,
K. S.
,
2007
, “
The Rise of Graphene
,”
Nat. Mater.
,
6
(
3
), pp.
183
191
.
19.
Lin
,
Y.-M.
,
Dimitrakopoulos
,
C.
,
Jenkins
,
K. A.
,
Farmer
,
D. B.
,
Chiu
,
H.-Y.
,
Grill
,
A.
, and
Avouris
,
P.
,
2010
, “
100-GHz Transistors From Wafer-Scale Epitaxial Graphene
,”
Science
,
327
(
5966
), p.
662
.
20.
Lin
,
Y.-M.
,
Valdes-Garcia
,
A.
,
Han
,
S.-J.
,
Farmer
,
D. B.
,
Meric
,
I.
,
Sun
,
Y.
,
Wu
,
Y.
,
Dimitrakopoulos
,
C.
,
Grill
,
A.
,
Avouris
,
P.
, and
Jenkins
,
K. A.
,
2011
, “
Wafer-Scale Graphene Integrated Circuit
,”
Science
,
332
(
6035
), pp.
1294
1297
.
21.
Kuila
,
T.
,
Bose
,
S.
,
Khanra
,
P.
,
Mishra
,
A. K.
,
Kim
,
N. H.
, and
Lee
,
J. H.
,
2011
, “
Recent Advances in Graphene-Based Biosensors
,”
Biosens. Bioelectron.
,
26
(
12
), pp.
4637
4648
.
22.
Schedin
,
F.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Hill
,
E. W.
,
Blake
,
P.
,
Katsnelson
,
M. I.
, and
Novoselov
,
K. S.
,
2007
, “
Detection of Individual Gas Molecules Adsorbed on Graphene
,”
Nat. Mater.
,
6
(
9
), pp.
652
655
.
23.
Hill
,
E. W.
,
Vijayaragahvan
,
A.
, and
Novoselov
,
K.
,
2011
, “
Graphene Sensors
,”
IEEE Sens. J.
,
11
(
12
), pp.
3161
3170
.
24.
Basu
,
S.
, and
Bhattacharyya
,
P.
,
2012
, “
Recent Developments on Graphene and Graphene Oxide Based Solid State Gas Sensors
,”
Sens. Actuators B Chem.
,
173
, pp.
1
21
.
25.
Smith
,
A. D.
,
Vaziri
,
S.
,
Niklaus
,
F.
,
Fischer
,
A. C.
,
Sterner
,
M.
,
Delin
,
A.
,
Östling
,
M.
, and
Lemme
,
M. C.
,
2013
, “
Pressure Sensors Based on Suspended Graphene Membranes
,”
Solid-State Electron.
,
88
, pp.
89
94
.
26.
Ma
,
J.
,
Jin
,
W.
,
Ho
,
H. L.
, and
Dai
,
J. Y.
,
2012
, “
High-Sensitivity Fiber-Tip Pressure Sensor With Graphene Diaphragm
,”
Opt. Lett.
,
37
(
13
), pp.
2493
2495
.
27.
Ma
,
J.
,
Xuan
,
H.
,
Ho
,
H. L.
,
Jin
,
W.
,
Yang
,
Y.
, and
Fan
,
S.
,
2013
, “
Fiber-Optic Fabry–Pérot Acoustic Sensor With Multilayer Graphene Diaphragm
,”
IEEE Photonics Technol. Lett.
,
25
(
10
), pp.
932
935
.
28.
Li
,
C.
,
Xiao
,
J.
,
Guo
,
T.
,
Fan
,
S.
, and
Jin
,
W.
,
2014
, “
Interference Characteristics in a Fabry–Perot Cavity With Graphene Membrane for Optical Fiber Pressure Sensors
,”
Microsyst.Technol.
,
21
(
11
), pp.
2297
2306
.
29.
Ventsel
,
E.
, and
Krauthammer
,
T.
,
2001
,
Thin Plates and Shells: Theory: Analysis, and Applications
,
CRC Press
,
Boca Raton
.
30.
de Silva
,
C. W.
,
2016
,
Sensor Systems: Fundamentals and Applications
,
CRC Press
,
Boca Raton
, p.
227
.
31.
Poot
,
M.
, and
van der Zant
,
H. S. J.
,
2008
, “
Nanomechanical Properties of Few-Layer Graphene Membranes
,”
Appl. Phys. Lett.
,
92
(
6
),
063111
.
32.
Liu
,
H.
,
Olson
,
D. A.
, and
Yu
,
M.
,
2014
, “
Modeling of an Air-Backed Diaphragm in Dynamic Pressure Sensors: Effects of the Air Cavity
,”
J. Sound Vib.
,
333
(
25
), pp.
7051
7075
.
33.
Bae
,
H.
, and
Yu
,
M.
,
2012
, “
Miniature Fabry-Perot Pressure Sensor Created by Using UV-Molding Process With an Optical Fiber Based Mold
,”
Opt. Express
,
20
(
13
), pp.
14573
14583
.
34.
Koenig
,
S. P.
,
Boddeti
,
N. G.
,
Dunn
,
M. L.
, and
Bunch
,
J. S.
,
2011
, “
Ultrastrong Adhesion of Graphene Membranes
,”
Nat. Nanotechnol.
,
6
(
9
), pp.
543
546
.
35.
Yu
,
M.
, and
Balachandran
,
B.
,
2003
, “
Acoustic Measurements Using a Fiber Optic Sensor System
,”
J. Intell. Mater. Syst. Struct.
,
14
(
7
), pp.
409
414
.
36.
Granttan
,
K. T. V.
, and
Meggitt
,
B. T.
, eds.,
2000
,
Optical Fiber Sensor Technology: Fundamentals
,
Springer Science + Business Media,
New York
.
37.
Hou
,
M. T. K.
, and
Chen
,
R.
,
2004
, “
A New Residual Stress Measurement Method Using Ultra-Wide Micromachined Bilayer Cantilevers
,”
J. Micromech. Microeng.
,
14
(
4
), pp.
490
496
.
You do not currently have access to this content.