This paper studies the dispersion characteristics of guided waves in layered finite media, surface waves in layered semi-infinite spaces, and Stoneley waves in layered infinite spaces. Using the precise integration method (PIM) and the Wittrick–Williams (W-W) algorithm, three methods that are based on the dynamic stiffness matrix, symplectic transfer matrix, and mixed energy matrix are developed to compute the dispersion relations. The dispersion relations in layered media can be reduced to a standard eigenvalue problem of ordinary differential equations (ODEs) in the frequency-wavenumber domain. The PIM is used to accurately solve the ODEs with two-point boundary conditions, and all of the eigenvalues are determined by using the eigenvalue counting method. The proposed methods overcome the difficulty of seeking roots from nonlinear transcendental equations. In theory, the three proposed methods are interconnected and can be transformed into each other, but a numerical example indicates that the three methods have different levels of numerical stability and that the method based on the mixed energy matrix is more stable than the other two methods. Numerical examples show that the method based on the mixed energy matrix is accurate and effective for cases of waves in layered finite media, layered semi-infinite spaces, and layered infinite spaces.

References

References
1.
Rose
,
J. L.
,
2014
,
Ultrasonic Guided Waves in Solid Media
,
Cambridge University Press
,
Cambridge, UK
.
2.
Staszewski
,
W. J.
,
Lee
,
B. C.
,
Mallet
,
L.
, and
Scarpa
,
F.
,
2004
, “
Structural Health Monitoring Using Scanning Laser Vibrometry—I: Lamb Wave Sensing
,”
Smart Mater. Struct.
,
13
(
2
), p.
251
.
3.
Socco
,
L. V.
,
Foti
,
S.
, and
Boiero
,
D.
,
2010
, “
Surface-Wave Analysis for Building Near-Surface Velocity Models-Established Approaches and New Perspectives
,”
Geophysics
,
75
(
5
), pp.
75A83
75A102
.
4.
Foti
,
S.
,
Lai
,
C. G.
,
Rix
,
G. J.
, and
Strobbia
,
C.
,
2014
,
Surface Wave Methods for Near-Surface Site Characterization
,
CRC Press
,
Boca Raton, FL
.
5.
Eslick
,
R.
,
Tsoflias
,
G.
, and
Steeples
,
D.
,
2008
, “
Field Investigation of Love Waves in Near-Surface Seismology
,”
Geophysics
,
73
(
3
), pp.
G1
G6
.
6.
Stoneley
,
R.
,
1924
, “
Elastic Waves at the Surface of Separation of Two Solids
,”
Proc. R. Soc. London, Ser. A
,
106
(
738
), pp.
416
428
.
7.
Li
,
B.
,
Lu
,
T.
, and
Qiang
,
L.
,
2016
, “
Investigation of Stoneley Waves in Multilayered Plates
,”
Int. Scholarly Sci. Res. Innovation
,
10
(
4
), p.
3
.
8.
Schwab
,
F.
, and
Knopoff
,
L.
,
1970
, “
Surface-Wave Dispersion Computations
,”
Bull. Seismol. Soc. Am.
,
60
(
2
), pp.
321
344
.https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/60/2/321/116796
9.
Lowe
,
M. J.
,
1995
, “
Matrix Techniques for Modeling Ultrasonic Waves in Multilayered Media
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
42
(
4
), pp.
525
542
.
10.
Vrettos
,
C.
,
1990
, “
Dispersive SH-Surface Waves in Soil Deposits of Variable Shear Modulus
,”
Soil Dyn. Earthquake Eng.
,
9
(
5
), pp.
255
264
.
11.
Vrettos
,
C.
,
1990
, “
In‐Plane Vibrations of Soil Deposits With Variable Shear Modulus—I: Surface Waves
,”
Int. J. Numer. Anal. Methods Geomech.
,
14
(
3
), pp.
209
222
.
12.
Vrettos
,
C.
,
1990
, “
In‐Plane Vibrations of Soil Deposits With Variable Shear Modulus—II: Line Load
,”
Int. J. Numer. Anal. Methods Geomech.
,
14
(
9
), pp.
649
662
.
13.
Thomson
,
W. T.
,
1950
, “
Transmission of Elastic Waves Through a Stratified Solid Medium
,”
J. Appl. Phys.
,
21
(
2
), pp.
89
93
.
14.
Haskell
,
N. A.
,
1953
, “
The Dispersion of Surface Waves on Multilayered Media
,”
Bull. Seismol. Soc. Am.
,
43
(
1
), pp.
17
34
.
15.
Dunkin
,
J. W.
,
1965
, “
Computation of Modal Solutions in Layered, Elastic Media at High Frequencies
,”
Bull. Seismol. Soc. Am.
,
55
(
2
), pp.
335
358
.https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/55/2/335/101419
16.
Ke
,
G.
,
Dong
,
H.
,
Kristensen
,
Å.
, and
Thompson
,
M.
,
2011
, “
Modified Thomson-Haskell Matrix Methods for Surface-Wave Dispersion-Curve Calculation and Their Accelerated Root-Searching Schemes
,”
Bull. Seismol. Soc. Am.
,
101
(
4
), pp.
1692
1703
.
17.
Wang
,
L.
, and
Rokhlin
,
S. I.
,
2001
, “
Stable Reformulation of Transfer Matrix Method for Wave Propagation in Layered Anisotropic Media
,”
Ultrasonics
,
39
(
6
), pp.
413
424
.
18.
Rokhlin
,
S. I.
, and
Wang
,
L.
,
2002
, “
Stable Recursive Algorithm for Elastic Wave Propagation in Layered Anisotropic Media: Stiffness Matrix Method
,”
J. Acoust. Soc. Am.
,
112
(
3
), pp.
822
834
.
19.
Schmidt
,
H.
, and
Tango
,
G.
,
1986
, “
Efficient Global Matrix Approach to the Computation of Synthetic Seismograms
,”
Geophys. J. Int.
,
84
(
2
), pp.
331
359
.
20.
Pol
,
C. B.
, and
Banerjee
,
S.
,
2013
, “
Modeling and Analysis of Propagating Guided Wave Modes in a Laminated Composite Plate Subject to Transient Surface Excitations
,”
Wave Motion
,
50
(
5
), pp.
964
978
.
21.
Kausel
,
E.
, and
Roësset
,
J. M.
,
1981
, “
Stiffness Matrices for Layered Soils
,”
Bull. Seismol. Soc. Am.
,
71
(
6
), pp.
1743
1761
.
22.
Kennett
,
B. L. N.
,
1974
, “
Reflections, Rays, and Reverberations
,”
Bull. Seismol. Soc. Am.
,
64
(
6
), pp.
1685
1696
.https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/64/6/1685/117375
23.
Chen
,
X. F.
,
1993
, “
A Systematic and Efficient Method of Computing Normal Modes for Multilayered Half-Space
,”
Geophys. J. Int.
,
115
(
2
), pp.
391
409
.
24.
Pei
,
D. H.
,
Louie
,
J. N.
, and
Pullammanappallil
,
S. K.
,
2008
, “
Improvements on Computation of Phase Velocities of Rayleigh Waves Based on the Generalized R/T Coefficient Method
,”
Bull. Seismol. Soc. Am.
,
98
(
1
), pp.
280
287
.
25.
Ham
,
S.
, and
Bathe
,
K. J.
,
2012
, “
A Finite Element Method Enriched for Wave Propagation Problems
,”
Comput. Struct.
,
94
, pp.
1
12
.
26.
Haque
,
A. B. M. T.
,
Ghachi
,
R. F.
,
Alnahhal
,
W. I.
,
Aref
,
A.
, and
Shim
,
J.
,
2017
, “
Generalized Spatial Aliasing Solution for the Dispersion Analysis of Infinitely Periodic Multilayered Composites Using the Finite Element Method
,”
ASME J. Vib. Acoust.
,
139
(
5
), p.
051010
.
27.
Karunasena
,
W.
,
Shah
,
A. H.
, and
Datta
,
S. K.
,
1991
, “
Wave Propagation in a Multilayered Laminated Cross-Ply Composite Plate
,”
ASME J. Appl. Mech.
,
58
(
4
), pp.
1028
1032
.
28.
Marzani
,
A.
,
Viola
,
E.
,
Bartoli
,
I.
,
Di Scalea
,
F. L.
, and
Rizzo
,
P.
,
2008
, “
A Semi-Analytical Finite Element Formulation for Modeling Stress Wave Propagation in Axisymmetric Damped Waveguides
,”
J. Sound Vib.
,
318
(
3
), pp.
488
505
.
29.
Park
,
J.
, and
Kausel
,
E.
,
2004
, “
Numerical Dispersion in the Thin-Layer Method
,”
Comput. Struct.
,
82
(
7
), pp.
607
625
.
30.
Hamdan
,
N.
,
Laghrouche
,
O.
,
Woodward
,
P.
, and
El-Kacimi
,
A.
,
2015
, “
Combined Paraxial-Consistent Boundary Conditions Finite Element Model for Simulating Wave Propagation in Elastic Half-Space Media
,”
Soil Dyn. Earthquake Eng.
,
70
, pp.
80
92
.
31.
de Oliveira Barbosa
,
J. M.
,
Park
,
J.
, and
Kausel
,
E.
,
2012
, “
Perfectly Matched Layers in the Thin Layer Method
,”
Comput. Methods Appl. Mech. Eng.
,
217
, pp.
262
274
.
32.
Kumar
,
J.
, and
Naskar
,
T.
,
2017
, “
A Fast and Accurate Method to Compute Dispersion Spectra for Layered Media Using a Modified Kausel-Roësset Stiffness Matrix Approach
,”
Soil Dyn. Earthquake Eng.
,
92
, pp.
176
182
.
33.
Astaneh
,
A. V.
, and
Guddati
,
M. N.
,
2016
, “
Improved Inversion Algorithms for Near-Surface Characterization
,”
Geophys. J. Int.
,
206
(2), pp. 1410–1423.
34.
Astaneh
,
A. V.
, and
Guddati
,
M. N.
,
2016
, “
Efficient Computation of Dispersion Curves for Multilayered Waveguides and Half-Spaces
,”
Comput. Methods Appl. Mech. Eng.
,
300
, pp.
27
46
.
35.
Wolf
,
J. P.
, and
Song
,
C. M.
,
2000
, “
The Scaled Boundary Finite-Element Method—A Primer: Derivations
,”
Comput. Struct.
,
78
(
1
), pp.
191
210
.
36.
Gravenkamp
,
H.
,
Song
,
C. M.
, and
Prager
,
J.
,
2012
, “
A Numerical Approach for the Computation of Dispersion Relations for Plate Structures Using the Scaled Boundary Finite Element Method
,”
J. Sound Vib.
,
331
(
11
), pp.
2543
2557
.
37.
Lee
,
U.
,
2009
,
Spectral Element Method in Structural Dynamics
,
Wiley
,
Singapore
.
38.
Rekatsinas
,
C. S.
, and
Saravanos
,
D. A.
,
2017
, “
A Hermite Spline Layerwise Time Domain Spectral Finite Element for Guided Wave Prediction in Laminated Composite and Sandwich Plates
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
031009
.
39.
Komatitsch
,
D.
, and
Tromp
,
J.
,
1999
, “
Introduction to the Spectral Element Method for Three-Dimensional Seismic Wave Propagation
,”
Geophys. J. Int.
,
139
(
3
), pp.
806
822
.
40.
Kudela
,
P.
,
Żak
,
A.
,
Krawczuk
,
M.
, and
Ostachowicz
,
W.
,
2007
, “
Modelling of Wave Propagation in Composite Plates Using the Time Domain Spectral Element Method
,”
J. Sound Vib.
,
302
(
4–5
), pp.
728
745
.
41.
Seriani
,
G.
, and
Oliveira
,
S.
,
2008
, “
Dispersion Analysis of Spectral Element Methods for Elastic Wave Propagation
,”
Wave Motion
,
45
(
6
), pp.
729
744
.
42.
Zhong
,
W. X.
,
2004
, “
On Precise Integration Method
,”
J. Comput. Appl. Math.
,
163
(
1
), pp.
59
78
.
43.
Zhang
,
J.
,
Gao
,
Q.
,
Tan
,
S. J.
, and
Zhong
,
W. X.
,
2012
, “
A Precise Integration Method for Solving Coupled Vehicle-Track Dynamics With Nonlinear Wheel–Rail Contact
,”
J. Sound Vib.
,
331
(
21
), pp.
4763
4773
.
44.
Zhong
,
W. X.
,
Lin
,
J. H.
, and
Gao
,
Q.
,
2004
, “
The Precise Computation for Wave Propagation in Stratified Materials
,”
Int. J. Numer. Methods Eng.
,
60
(
1
), pp.
11
25
.
45.
Gao
,
Q.
,
Lin
,
J. H.
,
Zhong
,
W. X.
,
Howson
,
W. P.
, and
Williams
,
F. W.
,
2006
, “
A Precise Numerical Method for Rayleigh Waves in a Stratified Half Space
,”
Int. J. Numer. Methods Eng.
,
67
(
6
), pp.
771
786
.
46.
Chen
,
L.
,
2015
, “
Three-Dimensional Green's Function for an Anisotropic Multi-Layered Half-Space
,”
Comput. Mech.
,
56
(
5
), pp.
795
814
.
47.
Lin
,
G.
,
Han
,
Z. J.
, and
Li
,
J. B.
,
2013
, “
An Efficient Approach for Dynamic Impedance of Surface Footing on Layered Half-Space
,”
Soil Dyn. Earthquake Eng.
,
49
, pp.
39
51
.
48.
Wittrick
,
W. H.
, and
Williams
,
F. W.
,
1971
, “
A General Algorithm for Computing Natural Frequencies of Elastic Structures
,”
Q. J. Mech. Appl. Math.
,
24
(
3
), pp.
263
284
.
49.
Zhong
,
W. X.
,
Williams
,
F. W.
, and
Bennett
,
P. N.
,
1997
, “
Extension of the Wittrick-Williams Algorithm to Mixed Variable Systems
,”
ASME J. Vib. Acoust.
,
119
(
3
), pp.
334
340
.
50.
Williams
,
F. W.
, and
Kennedy
,
D.
,
2010
, “
Historic, Recent and Ongoing Applications of the Wittrick-Williams Algorithm
,”
Comput. Technol. Rev.
,
2
, pp.
223
246
.
51.
Yuan
,
S.
,
Ye
,
K.
,
Xiao
,
C.
,
Kennedy
,
D.
, and
Williams
,
F. W.
,
2014
, “
Solution of Regular Second- and Fourth-Order Sturm-Liouville Problems by Exact Dynamic Stiffness Method Analogy
,”
J. Eng. Math.
,
86
(
1
), pp.
157
173
.
52.
Labib
,
A.
,
Kennedy
,
D.
, and
Featherston
,
C.
,
2014
, “
Free Vibration Analysis of Beams and Frames With Multiple Cracks for Damage Detection
,”
J. Sound Vib.
,
333
(
20
), pp.
4991
5003
.
53.
El-Kaabazi
,
N.
, and
Kennedy
,
D.
,
2012
, “
Calculation of Natural Frequencies and Vibration Modes of Variable Thickness Cylindrical Shells Using the Wittrick–Williams Algorithm
,”
Comput. Struct.
,
104
, pp.
4
12
.
54.
Arnold
,
V. I.
,
1989
,
Mathematical Methods of Classical Mechanics
,
Springer-Verlag
,
New York
.
55.
Goldstein
,
H.
,
1980
,
Classical Mechanics
,
Addison-Wesley
,
London
.
56.
Demčenko
,
A.
, and
Mažeika
,
L.
,
2002
, “
Calculation of Lamb Waves Dispersion Curves in Multilayered Planar Structures
,”
Ultrasound
,
44
(
3
), pp.
15
17
.http://www.ultragarsas.ktu.lt/index.php/USnd/article/view/8131/4059
You do not currently have access to this content.