This work is focused on the analysis of noise and vibration generated in underground railway tunnels due to train traffic. Specifically, an analysis of noise and vibration generated by train passage in an underground simple tunnel in a homogeneous full-space is presented. In this methodology, a two-and-a-half-dimensional coupled finite element and boundary element method (2.5D FEM-BEM) is used to model soil–structure interaction problems. The noise analysis inside the tunnel is performed using a 2.5D acoustic BEM considering a weak coupling. The method of fundamental solutions (MFS) is used to validate the acoustic BEM methodology. The influence of fastener stiffness on vibration and noise characteristic inside a simple tunnel is investigated.

References

1.
Park
,
B.
,
Jeon
,
J.-Y.
,
Choi
,
S.
, and
Park
,
J.
,
2015
, “
Short-Term Noise Annoyance Assessment in Passenger Compartments of High-Speed Trains Under Sudden Variation
,”
Appl. Acoust.
,
97
, pp.
46
53
.
2.
Kasess
,
C. H.
,
Noll
,
A.
,
Majdak
,
P.
, and
Waubke
,
H.
,
2013
, “
Effect of Train Type on Annoyance and Acoustic Features of the Rolling Noise
,”
J. Acoust. Soc. Am.
,
134
(
2
), pp.
1071
1081
.
3.
Jeon
,
J. Y.
,
Hong
,
J. Y.
,
Jang
,
H. S.
, and
Kim
,
J. H.
,
2015
, “
Speech Privacy and Annoyance Considerations in the Acoustic Environment of Passenger Cars of High-Speed Trains
,”
J. Acoust. Soc. Am.
,
138
(
6
), pp.
3976
3984
.
4.
Stamos
,
A. A.
, and
Beskos
,
D. E.
,
1995
, “
Dynamic Analysis of Large 3-D Underground Structures by the BEM
,”
Earthquake Eng. Struct. Dyn.
,
24
(
6
), pp.
917
934
.
5.
Godinho
,
L.
,
Tadeu
,
A.
, and
Branco
,
F.
,
2001
, “
3D Acoustic Scattering From an Irregular Fluid Waveguide Via the BEM
,”
Eng. Anal. Boundary Elem.
,
25
(
6
), pp.
443
453
.
6.
Godinho
,
L.
,
António
,
J.
, and
Tadeu
,
A.
,
2002
, “
Sound Propagation Around Rigid Barriers Laterally Confined by Tall Buildings
,”
Appl. Acoust.
,
63
(
6
), pp.
595
609
.
7.
Tadeu
,
A.
,
António
,
J.
,
Godinho
,
L.
, and
Mendes
,
P. A.
,
2012
, “
Simulation of Sound Absorption in 2D Thin Elements Using a Coupled BEM/TBEM Formulation in the Presence of Fixed and Moving 3D Sources
,”
J. Sound Vib.
,
331
(
10
), pp.
2386
2403
.
8.
Andersen
,
L.
, and
Jones
,
C.
,
2006
, “
Coupled Boundary and Finite Element Analysis of Vibration From Railway Tunnels a Comparison of Two and Three Dimensional Models
,”
J. Sound Vib.
,
293
(
3–5
), pp.
611
625
.
9.
Everstine
,
G. C.
, and
Henderson
,
F. M.
,
1990
, “
Coupled Finite Element/Boundary Element Approach for Fluid-Structure Interaction
,”
J. Acoust. Soc. Am.
,
87
(
5
), pp.
1938
1947
.
10.
He
,
Z. C.
,
Liu
,
G. R.
,
Zhong
,
Z. H.
,
Zhang
,
G. Y.
, and
Cheng
,
A. G.
,
2011
, “
A Coupled ES-FEM/BEM Method for Fluid-Structure Interaction Problems
,”
Eng. Anal. Boundary Elem.
,
35
(
1
), pp.
140
147
.
11.
He
,
Z. C.
,
Li
,
G. Y.
,
Zhong
,
Z. H.
,
Cheng
,
A. G.
,
Zhang
,
G. Y.
,
Li
,
E.
, and
Liu
,
G. R.
,
2012
, “
An ES-FEM for Accurate Analysis of 3D Mid-Frequency Acoustics Using Tetrahedron Mesh
,”
Comput. Struct.
,
106–107
, pp.
125
134
.
12.
Clouteau
,
D.
,
Elhabre
,
M. L.
, and
Aubry
,
D.
,
2000
, “
Periodic BEM and FEM-BEM Coupling—Application to Seismic Behaviour of Very Long Structures
,”
Comput. Mech.
,
25
(
6
), pp.
567
577
.
13.
Gupta
,
S.
,
Hussein
,
M. F. M.
,
Degrande
,
G.
,
Hunt
,
H. E. M.
, and
Clouteau
,
D.
,
2007
, “
A Comparison of Two Numerical Models for the Prediction of Vibrations From Underground Railway Traffic
,”
Soil Dyn. Earthquake Eng.
,
27
(
7
), pp.
608
624
.
14.
Gupta
,
S.
,
Liu
,
W. F.
,
Degrande
,
G.
,
Lombaert
,
G.
, and
Liu
,
W. N.
,
2008
, “
Prediction of Vibrations Induced by Underground Railway Traffic in Beijing
,”
J. Sound Vib.
,
310
(
3
), pp.
608
630
.
15.
Clouteau
,
D.
,
Arnst
,
M.
,
Al-Hussaini
,
T. M.
, and
Degrande
,
G.
,
2005
, “
Freefield Vibrations Due to Dynamic Loading on a Tunnel Embedded in a Stratified Medium
,”
J. Sound Vib.
,
283
(
1–2
), pp.
173
199
.
16.
Sheng
,
X.
,
Jones
,
C. J. C.
, and
Thompson
,
D. J.
,
2004
, “
A Theoretical Model for Ground Vibration From Trains Generated by Vertical Track Irregularities
,”
J. Sound Vib.
,
272
(
3–5
), pp.
937
965
.
17.
Alves Costa
,
P.
,
Calçada
,
R.
, and
Silva Cardoso
,
A.
,
2012
, “
Influence of Train Dynamic Modelling Strategy on the Prediction of Track-Ground Vibrations Induced by Railway Traffic
,”
Proc. Inst. Mech. Eng., Part F
,
226
(
4
), pp.
434
450
.
18.
François
,
S.
,
Schevenels
,
M.
,
Galvín
,
P.
,
Lombaert
,
G.
, and
Degrande
,
G.
,
2010
, “
A 2.5D Coupled FE-BE Methodology for the Dynamic Interaction Between Longitudinally Invariant Structures and a Layered Halfspace
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
23–24
), pp.
1536
1548
.
19.
Lombaert
,
G.
, and
Degrande
,
G.
,
2009
, “
Ground-Borne Vibration Due to Static and Dynamic Axle Loads of InterCity and High-Speed Trains
,”
J. Sound Vib.
,
319
(
3–5
), pp.
1036
1066
.
20.
Bian
,
X.
,
Chen
,
Y.
, and
Hu
,
T.
,
2008
, “
Numerical Simulation of High-Speed Train Induced Ground Vibrations Using 2.5D Finite Element Approach
,”
Sci. China, Ser. G: Phys., Mech. Astron.
,
51
(
6
), p.
632
.
21.
Sheng
,
X.
,
Jones
,
C. J. C.
, and
Thompson
,
D. J.
,
2005
, “
Modelling Ground Vibration From Railways Using Wavenumber Finite- and Boundary-Element Methods
,”
Proc. R. Soc. A
,
461
(
2059
), pp.
2043
2070
.
22.
Sheng
,
X.
,
Jones
,
C. J. C.
, and
Thompson
,
D. J.
,
2006
, “
Prediction of Ground Vibration From Trains Using the Wavenumber Finite and Boundary Element Methods
,”
J. Sound Vib.
,
293
(
3–5
), pp.
575
586
.
23.
Kausel
,
E.
, and
Roësset
,
J. M.
,
1981
, “
Stiffness Matrices for Layered Soils
,”
Bull. Seismol. Soc. Am.
,
71
(6), pp.
1743
1761
.
24.
Noori
,
B.
,
Arcos
,
R.
,
Clot
,
A.
, and
Romeu
,
J.
,
2018
, “
A Method Based on 3D Stiffness Matrices in Cartesian Coordinates for Computation of 2.5D Elastodynamic Green's Functions of Layered Half-Spaces
,”
Soil Dyn. Earthquake Eng.
,
114
, pp.
154
158
.
25.
Lopes
,
P.
,
Alves Costa
,
P.
,
Ferraz
,
M.
,
Calçada
,
R.
, and
Silva Cardoso
,
A.
,
2014
, “
Numerical Modeling of Vibrations Induced by Railway Traffic in Tunnels: From the Source to the Nearby Buildings
,”
Soil Dyn. Earthquake Eng.
,
61–62
, pp.
269
285
.
26.
Amado-Mendes
,
P.
,
Alves Costa
,
P.
,
Godinho
,
L.
, and
Lopes
,
P.
,
2015
, “
2.5D MFS-FEM Model for the Prediction of Vibrations Due to Underground Railway Traffic
,”
Eng. Struct.
,
104
, pp.
141
154
.
27.
Godinho
,
L.
,
Amado-Mendes
,
P.
,
Carbajo
,
J.
, and
Ramis-Soriano
,
J.
,
2015
, “
3D Numerical Modelling of Acoustic Horns Using the Method of Fundamental Solutions
,”
Eng. Anal. Boundary Elem.
,
51
, pp.
64
73
.
28.
Tadeu
,
A.
,
António
,
J.
, and
Godinho
,
L.
,
2009
, “
Defining an Accurate MFS Solution for 2.5D Acoustic and Elastic Wave Propagation
,”
Eng. Anal. Boundary Elem.
,
33
(
12
), pp.
1383
1395
.
29.
Yaseri
,
A.
,
Bazyar
,
M. H.
, and
Javady
,
S.
,
2018
, “
2.5D Coupled FEM-SBFEM Analysis of Ground Vibrations Induced by Train Movement
,”
Soil Dyn. Earthquake Eng.
,
104
, pp.
307
318
.
30.
Romero
,
A.
,
Tadeu
,
A.
,
Galvín
,
P.
, and
António
,
J.
,
2014
, “
2.5D Coupled BEM-FEM Used to Model Fluid and Solid Scattering Wave
,”
Int. J. Numer. Methods Eng.
,
101
(
2
), pp.
148
164
.
31.
Romero
,
A.
,
Galvín
,
P.
,
António
,
J.
,
Domínguez
,
J.
, and
Tadeu
,
A.
,
2017
, “
Modelling of Acoustic and Elastic Wave Propagation From Underground Structures Using a 2.5D BEM-FEM Approach
,”
Eng. Anal. Boundary Elem.
,
76
, pp.
26
39
.
32.
Fiala
,
P.
,
Degrande
,
G.
, and
Augusztinovicz
,
F.
,
2007
, “
Numerical Modelling of Ground-Borne Noise and Vibration in Buildings Due to Surface Rail Traffic
,”
J. Sound Vib.
,
301
(
3–5
), pp.
718
738
.
33.
Fiala
,
P.
,
Gupta
,
S.
,
Degrande
,
G.
, and
Augusztinovicz
,
F.
,
2008
, “
A Numerical Model for Re-Radiated Noise in Buildings
,” Ninth International Workshop on Railway Noise, Munich, Germany, Sept. 4–8, pp.
115
121
.
34.
Colaço
,
A.
,
Alves Costa
,
P.
,
Amado-Mendes
,
P.
, and
Godinho
,
L.
,
2017
, “
Prediction of Vibrations and Reradiated Noise Due to Railway Traffic: A Comprehensive Hybrid Model Based on a Finite Element Method and Method of Fundamental Solutions Approach
,”
ASME J. Vib. Acoust.
,
139
(
6
), p.
061009
.
35.
Sheng
,
X.
,
Zhong
,
T.
, and
Li
,
Y.
,
2017
, “
Vibration and Sound Radiation of Slab High-Speed Railway Tracks Subject to a Moving Harmonic Load
,”
J. Sound Vib.
,
395
, pp.
160
186
.
36.
Colaço
,
A.
,
Alves Costa
,
P.
,
Amado-Mendes
,
P.
,
Magalhães
,
F.
, and
Godinho
,
L.
,
2018
, “
Experimental Validation of a FEM-MFS Hybrid Numerical Approach for Vibro-Acoustic Prediction
,”
Appl. Acoust.
,
141
, pp.
79
92
.
37.
Alves Costa
,
P.
,
Calçada
,
R.
, and
Silva Cardoso
,
A.
,
2012
, “
Track-Ground Vibrations Induced by Railway Traffic: In-Situ Measurements and Validation of a 2.5D FEM-BEM Model
,”
Soil Dyn. Earthquake Eng.
,
32
(
1
), pp.
111
128
.
38.
Arcos
,
R.
,
Romeu
,
J.
,
Balastegui
,
A.
, and
Pàmies
,
T.
,
2011
, “
Determination of the Near Field Distance for Point and Line Sources Acting on the Surface of an Homogeneous and Viscoelastic Half-Space
,”
Soil Dyn. Earthquake Eng.
,
31
(
7
), pp.
1072
1074
.
39.
Bonnet
,
M.
,
1999
,
Boundary Integral Equation Methods for Solids and Fluids
,
Wiley
, New York.
40.
Gazis
,
D. C.
,
1959
, “
Three-Dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders—I: Analytical Foundation
,”
J. Acoust. Soc. Am.
,
31
(
5
), pp.
568
573
.
41.
Forrest
,
J.
, and
Hunt
,
H.
,
2006
, “
A Three-Dimensional Tunnel Model for Calculation of Train-Induced Ground Vibration
,”
J. Sound Vib.
,
294
(
4–5
), pp.
678
705
.
42.
Hanson
,
C. E.
,
Jason
,
P.
,
Ross
,
C.
, and
Towers
,
D. A.
,
2012
, “
High-Speed Ground Transportation Noise and Vibration Impact Assessment
,” U.S. Department of Transportation, Federal Railroad Administration Office, Washington, DC, Report No.
DOT/FRA/ORD-12/15
.https://iucat.iu.edu/iuk/14024181
43.
Tadeu
,
A. J. B.
, and
Kausel
,
E.
,
2000
, “
Green's Functions for Two-and-a-Half-Dimensional Elastodynamic Problems
,”
J. Eng. Mech.
,
126
(
10
), pp.
1093
1097
.
44.
Desmet
,
W.
, and
Vandepitte
,
D.
,
2005
, “
Finite Element Modeling for Acoustics
,”
International Seminar on Applied Acoustics
(ISAAC13), Leuven, Belgium, pp.
37
85
.
You do not currently have access to this content.