In this paper, an efficient and accurate computational method for determining responses of high-dimensional bilinear systems is developed. Predicting the dynamics of bilinear systems is computationally challenging since the piecewise-linear nonlinearity induced by contact eliminates the use of efficient linear analysis techniques. The new method, which is referred to as the hybrid symbolic-numeric computational (HSNC) method, is based on the idea that the entire nonlinear response of a bilinear system can be constructed by combining linear responses in each time interval where the system behaves linearly. The linear response in each time interval can be symbolically expressed in terms of the initial conditions. The transition time where the system switches from one linear state to the other and the displacement and velocity at the instant of transition are solved using a numerical scheme. The entire nonlinear response can then be obtained by joining each piece of the linear response together at the transition time points. The HSNC method is based on using linear features to obtain large computational savings. Both the transient and steady-state response of bilinear systems can be computed using the HSNC method. Thus, nonlinear characteristics, such as subharmonic motion, bifurcation, chaos, and multistability, can be efficiently analyzed using the HSNC method. The HSNC method is demonstrated on a single degree-of-freedom (DOF) system and a cracked cantilever beam model, and the nonlinear characteristics of these systems are examined.

References

References
1.
Dimarogonas
,
A. D.
,
1996
, “
Vibration of Cracked Structures: A State of the Art Review
,”
Eng. Fract. Mech.
,
55
(
5
), pp.
831
857
.
2.
Shiiryayev
,
O. V.
, and
Slater
,
J. C.
,
2010
, “
Detection of Fatigue Cracks Using Random Decrement Signatures
,”
Struct. Health Monit.
,
9
(
4
), pp.
347
360
.
3.
Burlayenko
,
V. N.
, and
Sadowski
,
T.
,
2009
, “
Influence of Skin/Core Debonding on Free Vibration Behavior of Foam and Honeycomb Cored Sandwich Plates
,”
Int. J. Non-Linear Mech.
,
45
(
10
), pp.
959
968
.
4.
Della
,
C. N.
, and
Shu
,
D.
,
2007
, “
Vibration of Delaminated Composite Laminates: A Review
,”
ASME Appl. Mech. Rev.
,
60
(
1
), pp.
1
20
.
5.
Hein
,
H.
, and
Feklistova
,
L.
,
2011
, “
Computationally Efficient Delamination Detection in Composite Beams Using Haar Wavelets
,”
Mech. Syst. Signal Process.
,
25
(
6
), pp.
2257
2270
.
6.
Jaumouillé
,
V.
,
Sinou
,
J.-J.
, and
Petitjean
,
B.
,
2010
, “
An Adaptive Harmonic Balance Method for Predicting the Nonlinear Dynamic Responses of Mechanical Systems—Application to Bolted Structures
,”
J. Sound Vib.
,
329
(
19
), pp.
4048
4067
.
7.
Zucca
,
S.
,
Firrone
,
C. M.
, and
Gola
,
M. M.
,
2012
, “
Numerical Assessment of Friction Damping at Turbine Blade Root Joints by Simultaneous Calculation of the Static and Dynamic Contact Loads
,”
Nonlinear Dyn.
,
67
(
3
), pp.
1943
1955
.
8.
Brownjohn
,
J. M. W.
,
De Stefano
,
A.
,
Xu
,
Y.-L.
,
Wenzel
,
H.
, and
Aktan
,
A. E.
,
2011
, “
Vibration-Based Monitoring of Civil Infrastructure: Challenges and Successes
,”
J. Civ. Struct. Health Monit.
,
1
(
3–4
), pp.
79
95
.
9.
Allemang
,
R.
,
1980
, “
Investigation of Some Multiple Input/Output Frequency Response Experimental Modal Analysis Techniques
,” Ph.D. thesis, Mechanical Engineering Department, University of Cincinnati, Cincinnati, OH.
10.
Ewins
,
D. J.
,
1984
,
Modal Testing: Theory and Practice
,
Research Studies Press
,
Taunton, UK
.
11.
Thompson
,
J. M. T.
,
1983
, “
Complex Dynamics of Compliant Off-Shore Structures
,”
Proc. R. Soc. London Ser. A
,
387
(
1793
), pp.
407
427
.
12.
Thompson
,
J. M. T.
,
Bokaian
,
A. R.
, and
Ghaffari
,
R.
,
1983
, “
Subharmonic Resonances and Chaotic Motions of a Bilinear Oscillator
,”
IMA J. Appl. Math.
,
31
(
3
), pp.
207
234
.
13.
Hsu
,
C. S.
,
1980
, “
A Theory of Cell-to-Cell Mapping Dynamical Systems
,”
ASME J. Appl. Mech.
,
47
(
4
), pp.
931
939
.
14.
Tongue
,
B. H.
, and
Gu
,
K.
,
1988
, “
Interpolated Cell Mapping of Dynamical Systems
,”
ASME J. Appl. Mech.
,
55
(
2
), pp.
461
466
.
15.
van der Spek
,
J. A. W.
,
1994
,
Cell Mapping Methods: Modifications and Extensions
,
Technische Universiteit Eindhoven
, Eindhoven, The Netherlands.
16.
Brake
,
M.
,
2011
, “
A Hybrid Approach for the Modal Analysis of Continuous Systems With Discrete Piecewise-Linear Constraints
,”
J. Sound Vib.
,
330
(
13
), pp.
3196
3221
.
17.
Xu
,
L.
,
Lu
,
M.
, and
Cao
,
Q.
,
2003
, “
Bifurcation and Chaos of a Harmonically Excited Oscillator With Both Stiffness and Viscous Damping Piecewise Linearities by Incremental Harmonic Balance Method
,”
J. Sound Vib.
,
264
(
4
), pp.
873
882
.
18.
Poudou
,
O.
,
2007
, “
Modeling and Analysis of the Dynamics of Dry-Friction-Damped Structural Systems
,”
Ph.D. thesis
, The University of Michigan, Ann Arbor, MI.https://deepblue.lib.umich.edu/handle/2027.42/55681
19.
Saito
,
A.
,
Castanier
,
M. P.
,
Pierre
,
C.
, and
Poudou
,
O.
,
2009
, “
Efficient Nonlinear Vibration Analysis of the Forced Response of Rotating Cracked Blades
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
1
), p.
011005
.
20.
Natsiavas
,
S.
,
1990
, “
On the Dynamics of Oscillators With Bi-Linear Damping and Stiffness
,”
Int. J. Non-Linear Mech.
,
25
(
5
), pp.
535
554
.
21.
Bapat
,
C.
,
2008
, “
Exact Solution of Stable Periodic One Contact per n Cycles Motion of a Damped Linear Oscillator Contacting a Unilateral Elastic Stop
,”
J. Sound Vib.
,
314
(
3–5
), pp.
803
820
.
22.
Jung
,
C.
,
D'Souza
,
K.
, and
Epureanu
,
B. I.
,
2014
, “
Nonlinear Amplitude Approximation for Bilinear Systems
,”
J. Sound Vib.
,
333
(
13
), pp.
2909
2919
.
23.
Tien
,
M.-H.
, and
D'Souza
,
K.
,
2017
, “
A Generalized Bilinear Amplitude and Frequency Approximation for Piecewise-Linear Nonlinear Systems With Gaps or Prestress
,”
Nonlinear Dyn.
,
88
(
4
), pp.
2403
2416
.
24.
Tien
,
M.-H.
,
Hu
,
T.
, and
D'Souza
,
K.
,
2018
, “
Generalized Bilinear Amplitude Approximation and X-Xr for Modeling Cyclically Symmetric Structures With Cracks
,”
ASME J. Vib. Acoust.
,
140
(
4
), p.
041012
.
25.
Nordmark
,
A.
,
1991
, “
Non-Periodic Motion Caused by Grazing Incidence in an Impact Oscillator
,”
J. Sound Vib.
,
145
(
2
), pp.
279
297
.
26.
Zuo
,
L.
, and
Curnier
,
A.
,
1994
, “
Nonlinear Real and Complex-Modes of Conewise Linear-Systems
,”
J. Sound Vib.
,
174
(
3
), pp.
289
313
.
27.
Mora
,
K.
,
Budd
,
C.
,
Glendinning
,
P.
, and
Keogh
,
P.
,
2014
, “
Non-Smooth Hopf-Type Bifurcations Arising From Impact–Friction Contact Events in Rotating Machinery
,”
Proc. R. Soc. London Ser. A
,
470
(
2171
), p. 20140490.
28.
Hurty
,
W. C.
,
1965
, “
Dynamic Analysis of Structural Systems Using Component Modes
,”
AIAA J.
,
3
(
4
), pp.
678
685
.
29.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.
30.
Shampine
,
L. F.
, and
Reichelt
,
M. W.
,
1997
, “
The MATLAB ODE Suite
,”
SIAM J. Sci. Comput.
,
18
(
1
), pp.
1
22
.
31.
MATLAB
,
2017
,
Version: R2017b
,
The MathWorks
,
Natick, MA
.
32.
Neves
,
A.
,
Simões
,
F.
, and
da Costa
,
A. P.
,
2016
, “
Vibrations of Cracked Beams: Discrete Mass and Stiffness Models
,”
Comput. Struct.
,
168
(
Suppl. C
), pp.
68
77
.
33.
Okamura
,
H.
,
Liu
,
H.
,
Chu
,
C.-S.
, and
Liebowitz
,
H.
,
1969
, “
A Cracked Column Under Compression
,”
Eng. Fract. Mech.
,
1
(
3
), pp.
547
564
.
You do not currently have access to this content.