Many industrial applications incorporate rotating shafts with fluctuating speeds around a required mean value. This often harmonic component of the shaft speed is generally detrimental, since it can excite components of the system, leading to large oscillations (and potentially durability issues), as well as to excessive noise generation. On the other hand, the addition of sensors on rotating shafts for system monitoring or control poses challenges due to the need to constantly supply power to the sensor and extract data from the system. In order to tackle the requirement of powering sensors for structure health monitoring or control applications, this work proposes a nonlinear vibration energy harvester design intended for use on rotating shafts with harmonic speed fluctuations. The essential nonlinearity of the harvester allows for increased operating bandwidth, potentially across the whole range of the shaft's operating conditions.

References

References
1.
Hsu
,
J.-C.
,
Tseng
,
C.-T.
, and
Chen
,
Y.-S.
,
2014
, “
Analysis and Experiment of Self-Frequency-Tuning Piezoelectric Energy Harvesters for Rotational Motion
,”
Smart Mater. Struct.
,
23
(
7
), p.
075013
.
2.
Gu
,
L.
, and
Livermore
,
C.
,
2010
, “
Passive Self-Tuning Energy Harvester for Extracting Energy From Rotational Motion
,”
Appl. Phys. Lett.
,
97
(
8
), p. 081904.
3.
Khameneifar
,
F.
,
Arzanpour
,
S.
, and
Moallem
,
M.
,
2013
, “
A Piezoelectric Energy Harvester for Rotary Motion Applications: Design and Experiments
,”
IEEE/ASME Trans. Mechatronics
,
18
(
5
), pp.
1527
1534
.
4.
Zhang
,
Y.
,
Zheng
,
R.
,
Kaizuka
,
T.
,
Su
,
D.
,
Nakano
,
K.
, and
Cartmell
,
M. P.
,
2015
, “
Broadband Vibration Energy Harvesting by Application of Stochastic Resonance From Rotational Environments
,”
Eur. Phys. J.: Spec. Top.
,
224
(
14–15
), pp.
2687
2701
.
5.
Zhang
,
Y.
,
Nakano
,
K.
,
Zheng
,
R.
, and
Cartmell
,
M. P.
,
2016
, “
Adjustable Nonlinear Mechanism System for Wideband Energy Harvesting in Rotational Circumstances
,”
J. Phys.: Conf. Ser.
,
744
(
1
), p.
012079
.
6.
Gu
,
L.
, and
Livermore
,
C.
,
2012
, “
Compact Passively Self-Tuning Energy Harvesting for Rotating Applications
,”
Smart Mater. Struct.
,
21
(
1
), p.
015002
.
7.
Roundy
,
S.
, and
Tola
,
J.
,
2014
, “
Energy Harvester for Rotating Environments Using Offset Pendulum and Nonlinear Dynamics
,”
Smart Mater. Struct.
, 23(10), p.
105004
.
8.
Wang
,
Y. J.
,
Chen
,
C. D.
, and
Sung
,
C. K.
,
2013
, “
System Design of a Weighted-Pendulum-Type Electromagnetic Generator for Harvesting Energy From a Rotating Wheel
,”
IEEE/ASME Trans. Mechatronics
,
18
(
2
), pp.
754
763
.
9.
Yang
,
Y.
,
Shen
,
Q.
,
Jin
,
J.
,
Wang
,
Y.
,
Qian
,
W.
, and
Yuan
,
D.
,
2014
, “
Rotational Piezoelectric Wind Energy Harvesting Using Impact-Induced Resonance
,”
Appl. Phys. Lett.
,
105
(
5
), p.
053901
.
10.
Zhang
,
J.
,
Fang
,
Z.
,
Shu
,
C.
,
Zhang
,
J.
,
Zhang
,
Q.
, and
Li
,
C.
,
2017
, “
A Rotational Piezoelectric Energy Harvester for Efficient Wind Energy Harvesting
,”
Sens. Actuators, A: Phys.
,
262
, pp.
123
129
.
11.
Joyce
,
B. S.
,
Farmer
,
J.
, and
Inman
,
D. J.
,
2014
, “
Electromagnetic Energy Harvester for Monitoring Wind Turbine Blades
,”
Wind Energy
,
17
(
6
), pp.
869
876
.
12.
Pillatsch
,
P.
,
Yeatman
,
E. M.
, and
Holmes
,
A. S.
,
2012
, “
Piezoelectric Rotational Energy Harvester for Body Sensors Using an Oscillating Mass
,” Ninth International Workshop on Wearable and Implantable Body Sensor Networks (
BSN
2012), London, May 9–12, pp.
6
10
.
13.
Pillatsch
,
P.
,
Yeatman
,
E. M.
, and
Holmes
,
A. S.
,
2014
, “
A Piezoelectric Frequency Up-Converting Energy Harvester With Rotating Proof Mass for Human Body Applications
,”
Sens. Actuators, A: Phys.
,
206
, pp.
178
185
.
14.
Mei
,
J.
, and
Li
,
L.
,
2013
, “
Split-Electrode Piezoelectric Scavengers for Harvesting Energy From Torsional Motions
,”
J. Phys.: Conf. Ser.
,
476
, p.
012136
.
15.
Trimble
,
A. Z.
,
Lang
,
J. H.
,
Pabon
,
J.
, and
Slocum
,
A.
,
2010
, “
A Device for Harvesting Energy From Rotational Vibrations
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091001
.
16.
Kim
,
G. W.
,
2015
, “
Piezoelectric Energy Harvesting From Torsional Vibration in Internal Combustion Engines
,”
Int. J. Automot. Technol.
,
16
(
4
), pp.
645
651
.
17.
Markovic
,
M.
, and
Perriard
,
Y.
,
2007
, “
An Analytical Formula for the Back EMF of a Slotted BLDG Motor
,” IEEE International Electric Machines and Drives Conference (
IEMDC
2007), Antalya, Turkey, May 3–5, pp.
1534
1539
.
18.
Owens
,
B. A. M.
, and
Mann
,
B. P.
,
2012
, “
Linear and Nonlinear Electromagnetic Coupling Models in Vibration-Based Energy Harvesting
,”
J. Sound Vib.
,
331
(
4
), pp.
922
937
.
19.
Zhu
,
Z. Q.
, and
Howe
,
D.
,
1993
, “
Instantaneous Magnetic Field Distribution in Permanent Magnet Brushless DC Motors—Part IV: Magnetic Field on Load
,”
IEEE Trans. Magn.
,
29
(
1
), pp.
152
158
.
20.
Joo, D., Woo, K., and Kim, D.,
2012
, “
Calculation of Winding Inductances for a Single-Phase Brushless DC Machine
,”
J. Magn.
,
17
(
3
), pp.
196
199
.
21.
Doedel
,
E.
, and
Oldeman
,
B.
,
2009
, “
Auto 07p: Continuation and Bifurcation Software for Ordinary Differential Equations: Technical Report
,”
Methods in Molecular Biology
, Humana Press,
Clifton, NJ
, pp.
475
498
.
22.
Schilder
,
F.
,
2007
, “
Rauto: Running AUTO More Efficiently
,” University of Surrey, Guildford, UK,
Technical Report
.http://www2.mat.dtu.dk/people/F.Schilder/rauto/index.html
23.
Moss
,
S. D.
,
Payne
,
O. R.
,
Hart
,
G. A.
, and
Ung
,
C.
,
2015
, “
Scaling and Power Density Metrics of Electromagnetic Vibration Energy Harvesting Devices
,”
Smart Mater. Struct.
,
24
(
2
), p.
23001
.
24.
Brennan
,
M. J.
,
Kovacic
,
I.
,
Carrella
,
A.
, and
Waters
,
T. P.
,
2008
, “
On the Jump-Up and Jump-Down Frequencies of the Duffing Oscillator
,”
J. Sound Vib.
,
318
(
4–5
), pp.
1250
1261
.
25.
Jang
,
S.-J.
,
Kim
,
I.-H.
,
Park
,
K.
, and
Jung
,
H.-J.
,
2016
, “
An Enhanced Tunable Rotational Energy Harvester With Variable Stiffness System for Low-Frequency Vibration
,”
Proc. Inst. Mech. Eng., Part C
,
230
(
5
), pp.
732
736
.
26.
Luo
,
J.
,
Wierschem
,
N. E.
,
Fahnestock
,
L. A.
,
Spencer
,
B. F.
,
Quinn
,
D. D.
,
Mcfarland
,
D. M.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2014
, “
Design, Simulation, and Large-Scale Testing of an Innovative Vibration Mitigation Device Employing Essentially Nonlinear Elastomeric Springs
,”
Earthquake Eng. Struct. Dyn.
,
43
(
12
), pp.
1829
1851
.
27.
Furlani
,
E. P.
,
2001
,
Permanent Magnet and Electromechanical Devices: Materials, Analysis, and Applications
,
Academic Press
,
San Diego, CA
.
28.
European Commission, 2016, “COMMISSION REGULATION (EU) 2016/427—of 10 March 2016—Amending Regulation (EC) No. 692/2008 as Regards Emissions From Light Passenger and Commercial Vehicles (Euro 6),” Off. J. Eur. Union, L82(1), p. 1.
29.
Arms
,
S. W.
,
Townsend
,
C. P.
,
Churchill
,
D. L.
,
Galbreath
,
J. H.
,
Mundell
,
S. W.
, and
Lane
,
H.
,
2005
, “
Power Management for Energy Harvesting Wireless Sensors
,”
Proc. SPIE
,
5763
, pp.
267
275
.
30.
Mitcheson
,
P. D.
,
Toh
,
T. T.
,
Wong
,
K. H.
,
Burrow
,
S. G.
, and
Holmes
,
A. S.
,
2011
, “
Tuning the Resonant Frequency and Damping of an Electromagnetic Energy Harvester Using Power Electronics
,”
IEEE Trans. Circuits Syst. II
,
58
(
12
), pp.
792
796
.
31.
Cammarano
,
A.
,
Neild
,
S. A.
,
Burrow
,
S. G.
,
Wagg
,
D. J.
, and
Inman
,
D. J.
,
2014
, “
Optimum Resistive Loads for Vibration-Based Electromagnetic Energy Harvesters With a Stiffening Nonlinearity
,”
J. Intell. Mater. Syst. Struct.
,
25
(
14
), pp.
1757
1770
.
You do not currently have access to this content.