Nonharmonic excitations are widely distributed in the environment. They can work as energy sources of vibration energy harvesters for powering wireless electronics. To overcome the narrow bandwidth of linear vibration energy harvesters, plucking piezoelectric energy harvesters have been designed. Plucking piezoelectric energy harvesters can convert sporadic motions into plucking force to excite vibration energy harvesters and achieve broadband performances. Though different kinds of plucking piezoelectric energy harvesters have been designed, the plucking mechanism is not well understood. The simplified models of plucking piezoelectric energy harvesting neglect the dynamic interaction between the plectrum and the piezoelectric beam. This research work is aimed at investigating the plucking mechanism and developing a comprehensive model of plucking piezoelectric energy harvesting. In this paper, the dynamic plucking mechanism is investigated and the Hertzian contact theory is applied. The developed model of plucking piezoelectric energy harvesting accounts for the dynamic interaction between the plectrum and the piezoelectric beam by considering contact theory. Experimental results show that the developed model well predicts the responses of plucking piezoelectric energy harvesters under different plucking velocities and overlap lengths. Parametric studies are conducted on the dimensionless model after choosing appropriate scaling. The influences of plucking velocity and overlap length on energy harvesting performance and energy conversion efficiency are discussed. The comprehensive model helps investigate the characteristics and guide the design of plucking piezoelectric energy harvesters.

References

1.
Ahmed
,
R.
,
Mir
,
F.
, and
Banerjee
,
S.
,
2017
, “
A Review on Energy Harvesting Approaches for Renewable Energies From Ambient Vibrations and Acoustic Waves Using Piezoelectricity
,”
Smart Mater. Struct.
,
26
(
8
), p.
085031
.
2.
Beeby
,
S. P.
,
Tudor
,
M. J.
, and
White
,
N. M.
,
2006
, “
Energy Harvesting Vibration Sources for Microsystems Applications
,”
Meas. Sci. Technol.
,
17
(
12
), pp.
R175
R195
.
3.
Liang
,
J. R.
, and
Liao
,
W. H.
,
2011
, “
Energy Flow in Piezoelectric Energy Harvesting Systems
,”
Smart Mater. Struct.
,
20
(
1
), p.
015005
.
4.
Quinn
,
D. D.
,
Triplett
,
A. L.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2011
, “
Energy Harvesting From Impulsive Loads Using Intentional Essential Nonlinearities
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011004
.
5.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.
6.
Ibrahim
,
A.
,
Towfighian
,
S.
, and
Younis
,
M. I.
,
2017
, “
Dynamics of Transition Regime in Bistable Vibration Energy Harvesters
,”
ASME J. Vib. Acoust.
,
139
(
5
), p.
051008
.
7.
Jacquelin
,
E.
,
Adhikari
,
S.
, and
Friswell
,
M. I.
,
2011
, “
A Piezoelectric Device for Impact Energy Harvesting
,”
Smart Mater. Struct.
,
20
(
10
), p.
105008
.
8.
Lee
,
A. J.
,
Wang
,
Y.
, and
Inman
,
D. J.
,
2014
, “
Energy Harvesting of Piezoelectric Stack Actuator From a Shock Event
,”
ASME J. Vib. Acoust.
,
136
(
1
), p.
011016
.
9.
Zou
,
H. X.
,
Zhang
,
W. M.
,
Wei
,
K. X.
,
Li
,
W. B.
,
Peng
,
Z. K.
, and
Meng
,
G.
,
2016
, “
Design and Analysis of a Piezoelectric Vibration Energy Harvester Using Rolling Mechanism
,”
ASME J. Vib. Acoust.
,
138
(
5
), p.
051007
.
10.
Daqaq
,
M. F.
,
Masana
,
R.
,
Erturk
,
A.
, and
Quinn
,
D. D.
,
2014
, “
On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
,”
Appl. Mech. Rev.
,
66
(
4
), p.
040801
.
11.
Ma
,
X.
,
Wilson
,
A.
,
Rahn
,
C. D.
, and
Trolier-McKinstry
,
S.
,
2016
, “
Efficient Energy Harvesting Using Piezoelectric Compliant Mechanisms: Theory and Experiment
,”
ASME J. Vib. Acoust.
,
138
(
2
), p.
021005
.
12.
Chen
,
L. Q.
,
Jiang
,
W. A.
,
Panyam
,
M.
, and
Daqaq
,
M. F.
,
2016
, “
A Broadband Internally Resonant Vibratory Energy Harvester
,”
ASME J. Vib. Acoust.
,
138
(
6
), p.
061007
.
13.
Hu
,
H.
,
Dai
,
L.
,
Chen
,
H.
,
Jiang
,
S.
,
Wang
,
H.
, and
Laude
,
V.
,
2017
, “
Two Methods to Broaden the Bandwidth of a Nonlinear Piezoelectric Bimorph Power Harvester
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
031008
.
14.
Salmani
,
H.
, and
Rahimi
,
G.
,
2018
, “
Study the Effect of Tapering on the Nonlinear Behavior of an Exponentially Varying Width Piezoelectric Energy Harvester
,”
ASME J. Vib. Acoust.
,
140
(
6
), p.
061004
.
15.
Tai
,
W. C.
,
Liu
,
M.
,
Yuan
,
Y.
, and
Zuo
,
L.
,
2018
, “
On Improvement of the Frequency Bandwidth of Nonlinear Vibration Energy Harvesters Using a Mechanical Motion Rectifier
,”
ASME J. Vib. Acoust.
,
140
(
5
), p.
051008
.
16.
Luan
,
X.
,
Wang
,
Y.
,
Jin
,
X.
, and
Huang
,
Z.
,
2018
, “
Optimal Locations of Piezoelectric Patch on Wideband Random Point-Driven Beam for Energy Harvesting
,”
ASME J. Vib. Acoust.
,
140
(
1
), p.
011014
.
17.
Tan
,
C. A.
,
Amoozegar
,
S.
, and
Lai
,
H. L.
,
2018
, “
Transfer Function Analysis of Constrained, Distributed Piezoelectric Vibration Energy Harvesting Beam Systems
,”
ASME J. Vib. Acoust.
,
140
(
3
), p.
031015
.
18.
Priya
,
S.
,
2005
, “
Modeling of Electric Energy Harvesting Using Piezoelectric Windmill
,”
Appl. Phys. Lett.
,
87
(
18
), p.
184101
.
19.
Pozzi
,
M.
, and
Zhu
,
M.
,
2011
, “
Plucked Piezoelectric Bimorphs for Knee-Joint Energy Harvesting: Modelling and Experimental Validation
,”
Smart Mater. Struct.
,
20
(
5
), p.
055007
.
20.
Bai
,
F.
,
Song
,
G.
,
Dong
,
W.
,
Guan
,
L.
, and
Bao
,
H.
,
2017
, “
Fan-Structure Wind Energy Harvester Using Circular Array of Polyvinylidene Fluoride Cantilevers
,”
J. Intell. Mater. Syst. Struct.
,
28
(
5
), pp.
653
662
.
21.
Kuang
,
Y.
, and
Zhu
,
M.
,
2017
, “
Design Study of a Mechanically Plucked Piezoelectric Energy Harvester Using Validated Finite Element Modelling
,”
Sens. Actuators A: Phys.
,
263
, pp.
510
520
.
22.
Pozzi
,
M.
,
2014
, “
Impulse Excitation of Piezoelectric Bimorphs for Energy Harvesting: A Dimensionless Model
,”
Smart Mater. Struct.
,
23
(
4
), p.
045044
.
23.
Kathpalia
,
B.
,
Tan
,
D.
,
Stern
,
I.
, and
Erturk
,
A.
,
2017
, “
An Experimentally Validated Model for Geometrically Nonlinear Plucking-Based Frequency Up-Conversion in Energy Harvesting
,”
Smart Mater. Struct.
,
27
(
1
), p.
015024
.
24.
Fu
,
X. L.
, and
Liao
,
W. H.
,
2017
, “
Modeling of Plucking Piezoelectric Energy Harvesters With Contact Theory
,”
Proc. SPIE
,
10164
, p.
101641E
.
25.
Tadokoro
,
C.
,
Matsumoto
,
A.
,
Nagamine
,
T.
, and
Sasaki
,
S.
,
2017
, “
Piezoelectric Power Generation Using Friction-Induced Vibration
,”
Smart Mater. Struct.
,
26
(
6
), p.
065012
.
26.
Fu
,
X. L.
, and
Liao
,
W. H.
,
2018
, “
Nondimensional Model and Parametric Studies of Impact Piezoelectric Energy Harvesting With Dissipation
,”
J. Sound Vib.
,
429
, pp.
78
95
.
27.
Timoshenko
,
S.
, and
Goodier
,
J.
,
1951
,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
28.
Hagood
,
N. W.
,
Chung
,
W. H.
, and
Von Flotow
,
A.
,
1990
, “
Modelling of Piezoelectric Actuator Dynamics for Active Structural Control
,”
J. Intell. Mater. Syst. Struct.
,
1
(
3
), pp.
327
354
.
29.
Erturk
,
A.
,
Tarazaga
,
P. A.
,
Farmer
,
J. R.
, and
Inman
,
D. J.
,
2009
, “
Effect of Strain Nodes and Electrode Configuration on Piezoelectric Energy Harvesting From Cantilevered Beams
,”
ASME J. Vib. Acoust.
,
131
(
1
), p.
011010
.
30.
Liang
,
J. R.
, and
Liao
,
W. H.
,
2012
, “
Impedance Modeling and Analysis for Piezoelectric Energy Harvesting Systems
,”
IEEE/ASME Trans. Mechatronics
,
17
(
6
), pp.
1145
1157
.
You do not currently have access to this content.