Emergence of increasingly smaller electromechanical systems with submilli-Watt power consumption led to the development of scalable micropower generators (MPGs) that harness ambient energy to provide electrical power on a very small scale. A flow MPG is one particular type which converts the momentum of an incident flow into electrical output. Traditionally, flow energy is harnessed using rotary-type generators whose performance has been shown to drop as their size decreases. To overcome this issue, oscillating flow MPGs were proposed. Unlike rotary-type generators which rely upon a constant aerodynamic force to produce a deflection or rotation, oscillating flow MPGs take advantage of cross-flow instabilities to provide a periodic forcing which can be used to transform the momentum of the moving fluid into mechanical motion. The mechanical motion is then transformed into electricity using an electromechanical transduction element. The purpose of this review article is to summarize important research carried out during the past decade on flow micropower generation using cross-flow instabilities. The summarized research is categorized according to the different instabilities used to excite mechanical motion: galloping, flutter, vortex shedding, and wake-galloping. Under each category, the fundamental mechanism responsible for the instability is explained, and the basic mathematical equations governing the motion of the generator are presented. The main design parameters affecting the performance of the generator are identified, and the pros and cons of each method are highlighted. Possible directions of future research which could help to improve the efficacy of flow MPGs are also discussed.

References

1.
Pachauri
,
R. K.
,
Allen
,
M. R.
,
Barros
,
V. R.
,
Broome
,
J.
,
Cramer
,
W.
,
Christ
,
R.
,
Church
,
J. A.
,
Clarke
,
L.
,
Dahe
,
Q.
,
Dasgupta
,
P.
, and
Dubash
,
N. K.
,
2014
, “
Climate Change 2014: Synthesis Report: Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
,”
IPCC
, Geneva, Switzerland, Report No. p. 151.
2.
Williams
,
C.
,
Shearwood
,
C.
,
Harradine
,
M.
,
Mellor
,
P.
,
Birch
,
T.
, and
Yates
,
R.
,
2001
, “
Development of an Electromagnetic Micro-Generator
,”
IEE Proc. Circuits, Devices Syst.
,
148
(
6
), pp.
337
342
.
3.
Freeland
,
R.
,
2012
, “
Energy Harvesting: A Practical Reality for Wireless Sensing
,” Perpetuum Online Resources, Romsey, United Kingdom, accessed Jan. 20, 2019, https://perpetuum.com/wp-content/uploads/2016/09/perpetuum-ltd-energy-harvesting-a-practical-reality-for-wireless-sensing.pdf.
4.
Hannan
,
M.
,
Mutashar
,
S.
,
Samad
,
S.
, and
Hussain
,
A.
,
2014
, “
Energy Harvesting for the Implantable Biomedical Devices: Issues and Challenges
,”
Biomed. Eng. Online
,
13
(
1
), pp.
79
79
.
5.
Raghunathan
,
V.
,
Kansal
,
A.
,
Hsu
,
J.
,
Friedman
,
J.
, and
Srivastava
,
M.
,
2005
, “
Design Considerations for Solar Energy Harvesting Wireless Embedded Systems
,”
IEEE Fourth International Symposium on Information Processing in Sensor Networks
(
IPSN
), Los Angeles, CA, Apr. 25, pp.
457
462
.
6.
Rank
,
B.
,
2013
, “
Wireless Condition Monitoring
,” Perpetua Power Source Technologies, Inc., Corvallis, OR.
7.
Bibo
,
A.
, and
Daqaq
,
M.
,
2014
, “
On the Optimal Performance and Universal Design Curves of Galloping Energy Harvesters
,”
Appl. Phys. Lett.
,
104
(
2
), p.
023901
.
8.
Beeby
,
S. P.
,
Tudor
,
M. J.
, and
White
,
N.
,
2006
, “
Energy Harvesting Vibration Sources for Microsystems Applications
,”
Meas. Sci. Technol.
,
17
(
12
), p.
R175
.
9.
Khan
,
F.
, and
Ahmad
,
I.
,
2016
, “
Review of Energy Harvesters Utilizing Bridge Vibrations
,”
Shock Vib.
,
2016
, p. 1340402.
10.
Hwang
,
G.
,
Byun
,
M.
,
Jeong
,
C.
, and
Lee
,
K.
,
2015
, “
Flexible Piezoelectric Thin-film Energy Harvesters and Nanosensors for Biomedical Applications
,”
Adv. Healthcare Mater.
,
4
(
5
), pp.
646
658
.
11.
Hwang
,
G.
,
Park
,
H.
,
Lee
,
J.
,
Oh
,
S.
,
Park
,
K.
,
Byun
,
M.
,
Park
,
H.
,
Ahn
,
G.
,
Jeong
,
C.
,
No
,
K.
,
Kwon
,
H.
,
Lee
,
S.
,
Joung
,
B.
, and
Lee
,
K.
,
2014
, “
Self-powered Cardiac Pacemaker Enabled by Flexible Single Crystalline Pmn-pt Piezoelectric Energy Harvester
,”
Adv. Mater.
,
26
(
28
), pp.
4880
4887
.
12.
Kroener
,
M.
,
Moll
,
N.
,
Ravindran
,
S. K. T.
,
Mehne
,
P.
, and
Woias
,
P.
,
2014
, “
Characterization of a Variable Reluctance Harvester
,”
J. Phys.: Conf. Ser.
,
557
, p. 012035.
13.
Zuo
,
L.
,
Scully
,
B.
,
Shestani
,
J.
, and
Zhou
,
Y.
,
2010
, “
Design and Characterization of an Electromagnetic Energy Harvester for Vehicle Suspensions
,”
Smart Mater. Struct.
,
19
(
4
), p.
045003
.
14.
Mitcheson
,
P. D.
,
Green
,
T. C.
,
Yeatman
,
E. M.
, and
Holmes
,
A. S.
,
2004
, “
Architectures for Vibration-driven Micropower Generators
,”
J. Microelectromech. Syst.
,
13
(
3
), pp.
429
440
.
15.
Park
,
J.-W.
,
Jung
,
H.-J.
,
Jo
,
H.
, and
Spencer
,
B. F.
,
2012
, “
Feasibility Study of Micro-wind Turbines for Powering Wireless Sensors on a Cable-Stayed Bridge
,”
Energies
,
5
(
9
), pp.
3450
3464
.
16.
Xu
,
F.
,
Yuan
,
F.
,
Hu
,
J.
, and
Qiu
,
Y.
,
2014
, “
Miniature Horizontal Axis Wind Turbine System for Multipurpose Application
,”
Energy
,
75
, pp.
216
224
.
17.
Rancourt
,
D.
,
Tabesh
,
A.
, and
Fréchette
,
L. G.
,
2007
, “
Evaluation of Centimeter-scale Micro Windmills: Aerodynamics and Electromagnetic Power Generation
,”
Proc. PowerMEMS 2007
, Freiburg, Germany, Nov. 28–29, pp.
93
96
.
18.
Sirohi
,
J.
, and
Mahadik
,
R.
,
2011
, “
Piezoelectric Wind Energy Harvester for Low-power Sensors
,”
J. Intell. Mater. Syst. Struct.
,
22
(
18
), pp.
2215
2228
.
19.
Tokaty
,
G. A.
,
1994
,
A History and Philosophy of Fluid Mechanics
,
Dover
,
New York
.
20.
Den Hartog
,
J. P.
,
1985
,
Mechanical Vibrations
, 1st ed.,
Courier Corporation
,
New York
.
21.
Roshko
,
A.
,
1960
, “
Experiments on the Flow Behind a Circular Cylinder at Very High Reynolds Numbers
,”
J. Fluid Mech.
,
10
(
03
), pp.
345
356
.
22.
Mallock
,
A.
,
1907
, “
On the Resistance of Air
,”
Proc. R. Soc. London A: Math., Phys. Eng. Sci.
,
79
(
530
), pp.
262
273
.
23.
Bénard
,
H.
,
1908
, “
Formation de Centres de Giration à L'arrière D'un Obstacle en Mouvement
,”
C. R. de L'Académie Des Sci. (Paris)
,
147
, pp.
839
842
.
24.
Bénard
,
H.
,
1908
, “
Étude Cinématographique Des Remous et Des Rides Produits Par la Translation D'un Obstacle
,”
C. R. de L'Académie Des Sci. (Paris)
,
147
, pp.
970
972
.
25.
Kármán
,
T. V.
,
1911
, “
Ueber Den Mechanismus Des Widerstandes, den Ein Bewegter Körper in Einer Flüssigkeit Erfährt
,”
Nachr. Von Der Gesellschaft Der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse
,
1911
(
Pt. 1
), pp.
509
517
.
26.
Kármán
,
T. V.
,
1912
, “
Ueber Den Mechanismus Des Widerstandes, den Ein Bewegter Körper in Einer Flüssigkeit Erfährt
,”
Nachr. Von Der Gesellschaft Der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse
,
5
(
Pt. 2
), pp.
547
556
.
27.
Abernathy
,
F. H.
, and
Kronauer
,
R. E.
,
1962
, “
The Formation of Vortex Streets
,”
J. Fluid Mech.
,
13
(
01
), pp.
1
20
.
28.
Gerrard
,
J. H.
,
1966
, “
The Mechanics of the Formation Region of Vortices Behind Bluff Bodies
,”
J. Fluid Mech.
,
25
(
02
), pp.
401
413
.
29.
Gerrard
,
J.
,
1967
, “
Numerical Computation of the Magnitude and Frequency of the Lift on a Circular Cylinder
,”
Philos. Trans. R. Soc. London A: Math., Phys. Eng. Sci.
,
261
(
1118
), pp.
137
162
.
30.
Clements
,
R.
,
1973
, “
An Inviscid Model of Two-dimensional Vortex Shedding
,”
J. Fluid Mech.
,
57
(
02
), p.
321336
.
31.
Achenbach
,
E.
,
1974
, “
Vortex Shedding From Spheres
,”
J. Fluid Mech.
,
62
(
02
), pp.
209
221
.
32.
Sarpkaya
,
T.
,
1975
, “
An Inviscid Model of Two-dimensional Vortex Shedding for Transient and Asymptotically Steady Separated Flow Over an Inclined Plate
,”
J. Fluid Mech.
,
68
(
01
), pp.
109
128
.
33.
Garrick
,
I.
, and
Reed
,
W.
, III
,
1981
, “
Historical Development of Aircraft Flutter
,”
AIAA J. Aircr.
,
18
(
11
), pp.
897
912
.
34.
Blevins
,
R.
,
1990
,
Flow-induced Vibration
, 2nd ed.,
Van Nostrand Reinhold
,
New York
.
35.
Nakamura
,
Y.
, and
Tomonari
,
Y.
,
1977
, “
Galloping of Rectangular Prisms in a Smooth and in a Turbulent Flow
,”
J. Sound Vib.
,
52
(
2
), pp.
233
241
.
36.
Zhao
,
L.
,
Tang
,
L.
, and
Yang
,
Y.
,
2013
, “
Comparison of Modeling Methods and Parametric Study for a Piezoelectric Wind Energy Harvester
,”
Smart Mater. Struct.
,
22
(
12
), p.
125003
.
37.
Paidoussis
,
M. P.
,
1998
,
Fluid-Structure Interactions: Slender Structures and Axial Flow
, Vol.
1
,
Academic Press
, San Diego, CA.
38.
Fung
,
Y.
,
An Introduction to Theory Elasticity
,
Dover
,
New York
.
39.
Blevins
,
R. D.
,
1977
,
Flow-Induced Vibration
,
Van Nostrand Reinhold
,
New York
.
40.
Blevins
,
R. D.
,
1990
,
Flow-Induced Vibration
, 2nd ed,
Van Nostrand Reinhold
,
New York
.
41.
Bearman
,
P.
,
1965
, “
Investigation of the Flow Behind a Two-dimensional Model With a Blunt Trailing Edge and Fitted With Splitter Plates
,”
J. Fluid Mech.
,
21
(
2
), pp.
241
255
.
42.
Parkinson
,
G.
, and
Smith
,
J.
,
1964
, “
The Square Prism as an Aeroelastic Non-linear Oscillator
,”
Q. J. Mech. Appl. Math.
,
17
(
2
), pp.
225
239
.
43.
Meseguer
,
J.
,
Sanz-Andrés
,
A.
, and
Alonso
,
G.
,
2014
, “
Determination of Maximum Mechanical Energy Efficiency in Energy Galloping Systems
,”
J. Eng. Mech.
,
141
(
1
), p.
04014101
.
44.
Javed
,
U.
, and
Abdelkefi
,
A.
,
2017
, “
Impacts of the Aerodynamic Force Representation on the Stability and Performance of a Galloping-Based Energy Harvester
,”
J. Sound Vib.
,
400
, pp.
213
226
.
45.
Javed
,
U.
,
Abdelkefi
,
A.
, and
Akhtar
,
I.
,
2016
, “
An Improved Stability Characterization for Aeroelastic Energy Harvesting Applications
,”
Commun. Nonlinear Sci. Numer. Simul.
,
36
, pp.
252
265
.
46.
Nayfeh
,
A. H.
,
1981
,
Introduction to Perturbation Techniques
,
Wiley-Interscience
,
New York
.
47.
Bibo
,
A.
, and
Daqaq
,
M. F.
,
2015
, “
An Analytical Framework for the Design and Comparative Analysis of Galloping Energy Harvesters Under Quasi-Steady Aerodynamics
,”
Smart Mater. Struct.
,
24
(
9
), p.
094006
.
48.
Barrero-Gil
,
A.
,
Alonso
,
G.
, and
Sanz-Andres
,
A.
,
2010
, “
Energy Harvesting From Transverse Galloping
,”
J. Sound Vib.
,
329
(
14
), pp.
2873
2883
.
49.
Kluger
,
J.
,
Moon
,
F.
, and
Rand
,
R.
,
2013
, “
Shape Optimization of a Blunt Body Vibro-Wind Galloping Oscillator
,”
J. Fluids Struct.
,
40
, pp.
185
200
.
50.
Xu-Xu
,
J.
,
Vicente-Ludlam
,
D.
, and
Barrero-Gil
,
A.
,
2016
, “
Theoretical Study of the Energy Harvesting of a Cantilever With Attached Prism Under Aeroelastic Galloping
,”
Eur. J. Mech.-B/Fluids
,
60
, pp.
189
195
.
51.
Noel
,
J.
,
2017
, “
Influence of Beam Rotation on the Response of Cantilevered Flow Energy Harvesters Exploiting the Galloping Instability
,” Master's thesis, Clemson University, Clemson, SC.
52.
Sirohi
,
J.
, and
Mahadik
,
R.
,
2012
, “
Harvesting Wind Energy Using a Galloping Piezoelectric Beam
,”
ASME J. Vib. Acoustics
,
134
(
1
), p.
011009
.
53.
Abdelkefi
,
A.
,
Hajj
,
M. R.
, and
Nayfeh
,
A. H.
,
2012
, “
Power Harvesting From Transverse Galloping of Square Cylinder
,”
Nonlinear Dyn.
,
70
(
2
), pp.
1355
1363
.
54.
Zhao
,
L.
,
Tang
,
L.
, and
Yang
,
Y.
,
2012
, “
Small Wind Energy Harvesting From Galloping Using Piezoelectric Materials
,”
ASME
Paper No. SMASIS2012-8212.
55.
Abdelkefi
,
A.
,
Scanlon
,
J.
,
McDowell
,
E.
, and
Hajj
,
M. R.
,
2013
, “
Performance Enhancement of Piezoelectric Energy Harvesters From Wake Galloping
,”
Appl. Phys. Lett.
,
103
(
3
), p.
033903
.
56.
Ali
,
M.
,
Arafa
,
M.
, and
Elaraby
,
M.
,
2013
, “
Harvesting Energy From Galloping Oscillations
,”
World Congress on Engineering
, London, UK, July 3–5, pp.
2053
205
.
57.
Dai
,
H.
,
Abdelkefi
,
A.
,
Javed
,
U.
, and
Wang
,
L.
,
2015
, “
Modeling and Performance of Electromagnetic Energy Harvesting From Galloping Oscillations
,”
Smart Mater. Struct.
,
24
(
4
), p.
045012
.
58.
Javed
,
U.
,
Dai
,
H.
, and
Abdelkefi
,
A.
,
2015
, “
Nonlinear Dynamics and Comparative Analysis of Hybrid Piezoelectric-Inductive Energy Harvesters Subjected to Galloping Vibrations
,”
Eur. Phys. J. Spec. Top.
,
224
(
14–15
), pp.
2929
2948
.
59.
Tang
,
L.
,
Zhao
,
L.
,
Yang
,
Y.
, and
Lefeuvre
,
E.
,
2015
, “
Equivalent Circuit Representation and Analysis of Galloping-Based Wind Energy Harvesting
,”
IEEE/ASME Trans. Mechatronics
,
20
(
2
), pp.
834
844
.
60.
Zhao
,
L.
,
Tang
,
L.
, and
Yang
,
Y.
,
2016
, “
Synchronized Charge Extraction in Galloping Piezoelectric Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
27
(
4
), pp.
453
468
.
61.
Zhao
,
L.
, and
Yang
,
Y.
,
2015
, “
Analytical Solutions for Galloping-based Piezoelectric Energy Harvesters With Various Interfacing Circuits
,”
Smart Mater. Struct.
,
24
(
7
), p.
075023
.
62.
Yang
,
Y.
,
Zhao
,
L.
, and
Tang
,
L.
,
2013
, “
Comparative Study of Tip Cross-sections for Efficient Galloping Energy Harvesting
,”
Appl. Phys. Lett.
,
102
(
6
), p.
064105
.
63.
Abdelkefi
,
A.
,
Hajj
,
M.
, and
Nayfeh
,
A.
,
2012
, “
Piezoelectric Energy Harvesting From Transverse Galloping of Bluff Bodies
,”
Smart Mater. Struct.
,
22
(
1
), p.
015014
.
64.
Abdelkefi
,
A.
,
Yan
,
Z.
, and
Hajj
,
M. R.
,
2014
, “
Performance Analysis of Galloping-Based Piezoaeroelastic Energy Harvesters With Different Cross-section Geometries
,”
J. Intell. Mater. Syst. Struct.
,
25
(
2
), pp.
246
256
.
65.
Hu
,
G.
,
Tse
,
K.-T.
, and
Kwok
,
K. C.
,
2016
, “
Enhanced Performance of Wind Energy Harvester by Aerodynamic Treatment of a Square Prism
,”
Appl. Phys. Lett.
,
108
(
12
), p.
123901
.
66.
Noel
,
J.
,
Yadav
,
R.
,
Li
,
G.
, and
Daqaq
,
M.
,
2018
, “
Improving the Performance of Galloping Micro-Power Generators by Passively Manipulating the Trailing Edge
,”
Appl. Phys. Lett.
,
112
(
8
), p.
083503
.
67.
Ewere
,
F.
,
Wang
,
G.
, and
Cain
,
B.
,
2014
, “
Experimental Investigation of Galloping Piezoelectric Energy Harvesters With Square Bluff Bodies
,”
Smart Mater. Struct.
,
23
(
10
), p.
104012
.
68.
Zhao
,
L.
,
Tang
,
L.
, and
Yang
,
Y.
,
2014
, “
Enhanced Piezoelectric Galloping Energy Harvesting Using 2 Degree-of-freedom Cut-Out Cantilever With Magnetic Interaction
,”
Japanese J. Appl. Phys.
,
53
(
6
), p.
060302
.
69.
Zhao
,
L.
, and
Yang
,
Y.
,
2015
, “
Enhanced Aeroelastic Energy Harvesting With a Beam Stiffener
,”
Smart Mater. Struct.
,
24
(
3
), p.
032001
.
70.
Bibo
,
A.
,
Alhadidi
,
A. H.
, and
Daqaq
,
M. F.
,
2015
, “
Exploiting a Nonlinear Restoring Force to Improve the Performance of Flow Energy Harvesters
,”
J. Appl. Phys.
,
117
(
4
), p.
045103
.
71.
Zhang
,
J.
,
Zhang
,
J.
,
Shu
,
C.
, and
Fang
,
Z.
,
2017
, “
Enhanced Piezoelectric Wind Energy Harvesting Based on a Buckled Beam
,”
Appl. Phys. Lett.
,
110
(
18
), p.
183903
.
72.
Vicente-Ludlam
,
D.
,
Barrero-Gil
,
A.
, and
Velazquez
,
A.
,
2015
, “
Enhanced Mechanical Energy Extraction From Transverse Galloping Using a Dual Mass System
,”
J. Sound Vib.
,
339
, pp.
290
303
.
73.
Abdelkefi
,
A.
,
Yan
,
Z.
, and
Hajj
,
M. R.
,
2013
, “
Temperature Impact on the Performance of Galloping-Based Piezoaeroelastic Energy Harvesters
,”
Smart Mater. Struct.
,
22
(
5
), p.
055026
.
74.
Daqaq
,
M. F.
,
2015
, “
Characterizing the Response of Galloping Energy Harvesters Using Actual Wind Statistics
,”
J. Sound Vib.
,
357
, pp.
365
376
.
75.
Tang
,
L.
,
Païdoussis
,
M. P.
, and
Jiang
,
J.
,
2009
, “
Cantilevered Flexible Plates in Axial Flow: Energy Transfer and the Concept of Flutter-Mill
,”
J. Sound Vib.
,
326
(
1–2
), pp.
263
276
.
76.
Dunnmon
,
J.
,
Stanton
,
S.
,
Mann
,
B.
, and
Dowell
,
E.
,
2011
, “
Power Extraction From Aeroelastic Limit Cycle Oscillations
,”
J. Fluids Struct.
,
27
(
8
), pp.
1182
1198
.
77.
Michelin
,
S.
, and
Doaré
,
O.
,
2013
, “
Energy Harvesting Efficiency of Piezoelectric Flags in Axial Flows
,”
J. Fluid Mech.
,
714
, pp.
489
504
.
78.
Piñeirua
,
M.
,
Doaré
,
O.
, and
Michelin
,
S.
,
2015
, “
Influence and Optimization of the Electrodes Position in a Piezoelectric Energy Harvesting Flag
,”
J. Sound Vib.
,
346
, pp.
200
215
.
79.
Jung
,
H.-J.
,
Kim
,
I.-H.
, and
Jang
,
S.-J.
,
2011
, “
An Energy Harvesting System Using the Wind-induced Vibration of a Stay Cable for Powering a Wireless Sensor Node
,”
Smart Mater. Struct.
,
20
(
7
), p.
075001
.
80.
Xiang
,
T.
,
Chi
,
Z.
,
Li
,
F.
,
Luo
,
J.
,
Tang
,
L.
,
Zhao
,
L.
, and
Yang
,
Y.
,
2013
, “
Powering Indoor Sensing With Airflows: A Trinity of Energy Harvesting, Synchronous Duty-Cycling, and Sensing
,”
11th ACM Conference on Embedded Networked Sensor Systems
, Roma, Italy, Nov. 11–15, p.
16
.
81.
Tsujiura
,
Y.
,
Suwa
,
E.
,
Nishi
,
T.
,
Kurokawa
,
F.
,
Hida
,
H.
, and
Kanno
,
I.
,
2017
, “
Airflow Energy Harvester of Piezoelectric Thin-film Bimorph Using Self-Excited Vibration
,”
Sens. Actuators A: Phys.
,
261
, pp.
295
301
.
82.
He
,
X.
,
Shang
,
Z.
,
Cheng
,
Y.
, and
Zhu
,
Y.
,
2013
, “
A Micromachined Low-Frequency Piezoelectric Harvester for Vibration and Wind Energy Scavenging
,”
J. Micromech. Microeng.
,
23
(
12
), p.
125009
.
83.
Liao
,
J. C.
,
Beal
,
D. N.
,
Lauder
,
G. V.
, and
Triantafyllou
,
M. S.
,
2003
, “
Fish Exploiting Vortices Decrease Muscle Activity
,”
Science
,
302
(
5650
), pp.
1566
1569
.
84.
Akhtar
,
I.
,
Mittal
,
R.
,
Lauder
,
G. V.
, and
Drucker
,
E.
,
2007
, “
Hydrodynamics of a Biologically Inspired Tandem Flapping Foil Configuration
,”
Theor. Comput. Fluid Dyn.
,
21
(
3
), pp.
155
170
.
85.
Khalid
,
M. S. U.
,
Akhtar
,
I.
, and
Dong
,
H.
,
2016
, “
Hydrodynamics of a Tandem Fish School With Asynchronous Undulation of Individuals
,”
J. Fluids Struct.
,
66
, pp.
19
35
.
86.
Renno
,
J.
,
Daqaq
,
M. F.
,
Farmer
,
J.
, and
Inman
,
D. J.
,
2007
, “
Parameter Optimization of a Vibration-Based Energy Harvester
,”
ASME
Paper No. DETC2007-35487.
87.
Renno
,
J. M.
,
Daqaq
,
M. F.
, and
Inman
,
D. J.
,
2009
, “
On the Optimal Energy Harvesting From a Vibration Source
,”
J. Sound Vib.
,
320
(
1–2
), pp.
386
405
.
88.
Allen
,
J.
, and
Smits
,
A.
,
2001
, “
Energy Harvesting EEL
,”
J. Fluids Struct.
,
15
(
3–4
), pp.
629
640
.
89.
Taylor
,
G. W.
,
Burns
,
J. R.
,
Kammann
,
S. A.
,
Powers
,
W. B.
, and
Welsh
,
T. R.
,
2001
, “
The Energy Harvesting Eel: A Small Subsurface Ocean/River Power Generator
,”
IEEE J. Oceanic Eng.
,
26
(
4
), pp.
539
547
.
90.
Pobering
,
S.
, and
Schwesinger
,
N.
,
2004
, “
A Novel Hydropower Harvesting Device
,”
International Conference on MEMS, NANO and Smart Systems
(
ICMENS
), Banff, AB, Canada, Aug. 25–27, pp.
480
485
.
91.
Akaydin
,
H.
,
Elvin
,
N.
, and
Andreopoulos
,
Y.
,
2010
, “
Energy Harvesting From Highly Unsteady Fluid Flows Using Piezoelectric Materials
,”
J. Intell. Mater. Syst. Struct.
,
21
(
13
), pp.
1263
1278
.
92.
Akaydin
,
H. D.
,
Elvin
,
N.
, and
Andreopoulos
,
Y.
,
2010
, “
Wake of a Cylinder: A Paradigm for Energy Harvesting With Piezoelectric Materials
,”
Exp. Fluids
,
49
(
1
), pp.
291
304
.
93.
Shi
,
S.
,
New
,
T.
, and
Liu
,
Y.
,
2013
, “
Flapping Dynamics of a Low Aspect-Ratio Energy-Harvesting Membrane Immersed in a Square Cylinder Wake
,”
Exp. Therm. Fluid Sci.
,
46
, pp.
151
161
.
94.
Li
,
S.
, and
Sun
,
Z.
,
2015
, “
Harvesting Vortex Energy in the Cylinder Wake With a Pivoting Vane
,”
Energy
,
88
, pp.
783
792
.
95.
Wang
,
D.-A.
,
Pham
,
H.-T.
,
Chao
,
C.-W.
, and
Chen
,
J. M.
,
2011
, “
A Piezoelectric Energy Harvester Based on Pressure Fluctuations in Kármán Vortex Street
,”
World Renewable Energy Congress-Sweden
, Vol.
57
, Linköping; Sweden, May 8–13, pp.
1456
1463
.
96.
Wang
,
D.-A.
,
Chiu
,
C.-Y.
, and
Pham
,
H.-T.
,
2012
, “
Electromagnetic Energy Harvesting From Vibrations Induced by Kármán Vortex Street
,”
Mechatronics
,
22
(
6
), pp.
746
756
.
97.
Jung
,
H.-J.
, and
Lee
,
S.-W.
,
2011
, “
The Experimental Validation of a New Energy Harvesting System Based on the Wake Galloping Phenomenon
,”
Smart Mater. Struct.
,
20
(
5
), p.
055022
.
98.
Weinstein
,
L. A.
,
Cacan
,
M. R.
,
So
,
P.
, and
Wright
,
P.
,
2012
, “
Vortex Shedding Induced Energy Harvesting From Piezoelectric Materials in Heating, Ventilation and Air Conditioning Flows
,”
Smart Mater. Struct.
,
21
(
4
), p.
045003
.
99.
Sun
,
H.
,
Zhu
,
D.
,
White
,
N.
, and
Beeby
,
S.
,
2013
, “
A Miniature Airflow Energy Harvester From Piezoelectric Materials
,”
J. Phys.: Conf. Ser.
,
476
, p.
012057
.
100.
Demori
,
M.
,
Ferrari
,
M.
,
Ferrari
,
V.
,
Farisè
,
S.
, and
Poesio
,
P.
,
2014
, “
Energy Harvesting From Von Karman Vortices in Airflow for Autonomous Sensors
,”
Procedia Eng.
,
87
, pp.
775
778
.
101.
Pobering
,
S.
, and
Schwesinger
,
N.
,
2008
, “
Power Supply for Wireless Sensor Systems
,”
IEEE Sensors
, Lecce, Italy, Oct. 26–29, pp.
685
688
.
102.
Hobbs
,
W. B.
, and
Hu
,
D. L.
,
2012
, “
Tree-Inspired Piezoelectric Energy Harvesting
,”
J. Fluids Struct.
,
28
(
Suppl. C
), pp.
103
114
.
103.
Zhang
,
B.
,
Song
,
B.
,
Mao
,
Z.
,
Tian
,
W.
, and
Li
,
B.
,
2017
, “
Numerical Investigation on VIV Energy Harvesting of Bluff Bodies With Different Cross Sections in Tandem Arrangement
,”
Energy
,
133
(
Suppl. C
), pp.
723
736
.
104.
Alhadidi
,
A.
, and
Daqaq
,
M.
,
2016
, “
A Broadband Bi-Stable Flow Energy Harvester Based on the Wake-Galloping Phenomenon
,”
Appl. Phys. Lett.
,
109
(
3
), p.
033904
.
105.
Abdelkefi
,
A.
,
Hasanyan
,
A.
,
Montgomery
,
J.
,
Hall
,
D.
, and
Hajj
,
M. R.
,
2014
, “
Incident Flow Effects on the Performance of Piezoelectric Energy Harvesters From Galloping Vibrations
,”
Theor. Appl. Mech. Lett.
,
4
(
2
), p.
022002
.
106.
Alhadidi
,
A. H.
,
Abderrahmane
,
H.
, and
Daqaq
,
M. F.
,
2016
, “
Exploiting Stiffness Nonlinearities to Improve Flow Energy Capture From the Wake of a Bluff Body
,”
Phys. D: Nonlinear Phenom.
,
337
, pp.
30
42
.
107.
Bearman
,
P.
,
1984
, “
Vortex Shedding From Oscillating Bluff Bodies
,”
Annu. Rev. Fluid Mech.
,
16
(
1
), pp.
195
222
.
108.
Bangash
,
Z. A.
,
2015
, “
Vortex Induced Vibrations of Long Flexible Cylinders With and Without Wake Interference
,” Ph.D. thesis, Universitat Rovira i Virgili, Reus, Spain.
109.
Xie
,
J.
,
Yang
,
J.
,
Hu
,
H.
,
Hu
,
Y.
, and
Chen
,
X.
,
2012
, “
A Piezoelectric Energy Harvester Based on Flow-Induced Flexural Vibration of a Circular Cylinder
,”
J. Intell. Mater. Syst. Struct.
,
23
(
2
), pp.
135
139
.
110.
Barrero-Gil
,
A.
,
Pindado
,
S.
, and
Avila
,
S.
,
2012
, “
Extracting Energy From Vortex-Induced Vibrations: A Parametric Study
,”
Appl. Math. Modell.
,
36
(
7
), pp.
3153
3160
.
111.
Bernitsas
,
M. M.
,
Raghavan
,
K.
,
Ben-Simon
,
Y.
, and
Garcia
,
E.
,
2008
, “
VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy From Fluid Flow
,”
ASME J. Offshore Mech. Arct. Eng.
,
130
(
4
), p.
041101
.
112.
Akaydin
,
H.
,
Elvin
,
N.
, and
Andreopoulos
,
Y.
,
2012
, “
The Performance of a Self-Excited Fluidic Energy Harvester
,”
Smart Mater. Struct.
,
21
(
2
), p.
025007
.
113.
Gao
,
X.
,
Shih
,
W. H.
, and
Shih
,
W. Y.
,
2013
, “
Flow Energy Harvesting Using Piezoelectric Cantilevers With Cylindrical Extension
,”
IEEE Trans. Ind. Electron.
,
60
(
3
), pp.
1116
1118
.
114.
Dai
,
H.
,
Abdelkefi
,
A.
, and
Wang
,
L.
,
2014
, “
Theoretical Modeling and Nonlinear Analysis of Piezoelectric Energy Harvesting From Vortex-Induced Vibrations
,”
J. Intell. Mater. Syst. Struct.
,
25
(
14
), pp.
1861
1874
.
115.
Song
,
R.
,
Shan
,
X.
,
Lv
,
F.
, and
Xie
,
T.
,
2015
, “
A Study of Vortex-Induced Energy Harvesting From Water Using PZT Piezoelectric Cantilever With Cylindrical Extension
,”
Ceram. Int.
,
41
(
Suppl. 1
), pp.
S768
S773
.
116.
Abdelkefi
,
A.
,
Nayfeh
,
A.
, and
Hajj
,
M.
,
2012
, “
Effects of Nonlinear Piezoelectric Coupling on Energy Harvesters Under Direct Excitation
,”
Nonlinear Dyn.
,
67
(
2
), pp.
1221
1232
.
117.
Grouthier
,
C.
,
Michelin
,
S.
, and
De Langre
,
E.
,
2012
, “
Optimal Energy Harvesting by Vortex-Induced Vibrations in Cables
,”
Tenth FIV 2012-International Conference on Flow-Induced Vibrations Conference (and Flow-Induced Noise)
, Dublin, Ireland, July 2, pp. 291–298.
118.
Grouthier
,
C.
,
Michelin
,
S.
, and
de Langre
,
E.
,
2013
, “
Energy Harvesting by Vortex-Induced Vibrations in Slender Structures
,”
ASME
Paper No. OMAE2013-10241
.
119.
Grouthier
,
C.
,
Michelin
,
S.
,
Bourguet
,
R.
,
Modarres-Sadeghi
,
Y.
, and
Langre
,
E.
,
2014
, “
On the Efficiency of Energy Harvesting Using Vortex-Induced Vibrations of Cables
,”
J. Fluids Struct.
,
49
(
Suppl. C
), pp.
427
440
.
120.
Mehmood
,
A.
,
Abdelkefi
,
A.
,
Hajj
,
M.
,
Nayfeh
,
A.
,
Akhtar
,
I.
, and
Nuhait
,
A.
,
2013
, “
Piezoelectric Energy Harvesting From Vortex-Induced Vibrations of Circular Cylinder
,”
J. Sound Vib.
,
332
(
19
), pp.
4656
4667
.
121.
Abdelkefi
,
A.
,
Hajj
,
M.
, and
Nayfeh
,
A.
,
2012
, “
Phenomena and Modeling of Piezoelectric Energy Harvesting From Freely Oscillating Cylinders
,”
Nonlinear Dyn.
,
70
(
2
), pp.
1377
1388
.
122.
Soti
,
A. K.
,
Thompson
,
M. C.
,
Sheridan
,
J.
, and
Bhardwaj
,
R.
,
2017
, “
Harnessing Electrical Power From Vortex-Induced Vibration of a Circular Cylinder
,”
J. Fluids Struct.
,
70
(
Suppl. C
), pp.
360
373
.
123.
Mackowski
,
A. W.
, and
Williamson
,
C. H. K.
,
2013
, “
An Experimental Investigation of Vortex-Induced Vibration With Nonlinear Restoring Forces
,”
Phys. Fluids
,
25
(
8
), p.
087101
.
124.
Huynh
,
B.
,
Tjahjowidodo
,
T.
,
Zhong
,
Z.
,
Wang
,
Y.
, and
Srikanth
,
N.
,
2015
, “
Nonlinearly Enhanced Vortex Induced Vibrations for Energy Harvesting
,”
IEEE International Conference on Advanced Intelligent Mechatronics
(
AIM
), Busan, South Korea, July 7–11, pp.
91
96
.
125.
Naseer
,
R.
,
Dai
,
H.
,
Abdelkefi
,
A.
, and
Wang
,
L.
,
2017
, “
Piezomagnetoelastic Energy Harvesting From Vortex-Induced Vibrations Using Monostable Characteristics
,”
Appl. Energy
,
203
(
Suppl. C
), pp.
142
153
.
126.
Huynh
,
B.
,
Tjahjowidodo
,
T.
,
Zhong
,
Z.-W.
,
Wang
,
Y.
, and
Srikanth
,
N.
,
2018
, “
Design and Experiment of Controlled Bistable Vortex Induced Vibration Energy Harvesting Systems Operating in Chaotic Regions
,”
Mech. Syst. Signal Process.
,
98
(
Suppl. C
), pp.
1097
1115
.
127.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
,
1990
, “
Controlling Chaos
,”
Phys. Rev. Lett.
,
64
(
11
), p.
1196
.
128.
Song
,
R.
,
Shan
,
X.
,
Lv
,
F.
, and
Xie
,
T.
,
2015
, “
A Novel Piezoelectric Energy Harvester Using the Macro Fiber Composite Cantilever With a Bicylinder in Water
,”
Appl. Sci.
,
5
(
4
), pp.
1942
1954
.
129.
Hu
,
G.
,
Tse
,
K. T.
,
Kwok
,
K. C. S.
,
Song
,
J.
, and
Lyu
,
Y.
,
2016
, “
Aerodynamic Modification to a Circular Cylinder to Enhance the Piezoelectric Wind Energy Harvesting
,”
Appl. Phys. Lett.
,
109
(
19
), p.
193902
.
130.
Arionfard
,
H.
, and
Nishi
,
Y.
,
2017
, “
Experimental Investigation of a Drag Assisted Vortex-Induced Vibration Energy Converter
,”
J. Fluids Struct.
,
68
(
Suppl. C
), pp.
48
57
.
131.
Elvin
,
N.
, and
Erturk
,
A.
,
2013
,
Advances in Energy Harvesting Methods
,
Springer Science & Business Media
, New York.
132.
Ding
,
L.
,
Zhang
,
L.
,
Wu
,
C.
,
Mao
,
X.
, and
Jiang
,
D.
,
2015
, “
Flow Induced Motion and Energy Harvesting of Bluff Bodies With Different Cross Sections
,”
Energy Convers. Manage.
,
91
(
Suppl. C
), pp.
416
426
.
133.
Bibo
,
A.
, and
Daqaq
,
M. F.
,
2013
, “
Energy Harvesting Under Combined Aerodynamic and Base Excitations
,”
J. Sound Vib.
,
332
(
20
), pp.
5086
5102
.
134.
Fung
,
Y.
,
1969
,
An Introduction to the Theory of Aeroelasticity
,
Dover
,
New York
.
135.
Bryant
,
M.
, and
Garcia
,
E.
,
2009
, “
Energy Harvesting: A Key to Wireless Sensor Nodes
,”
Proc. SPIE
,
7493
, p.
74931W
.
136.
Bryant
,
M.
, and
Garcia
,
E.
,
2011
, “
Modeling and Testing of a Novel Aeroelastic Flutter Energy Harvester
,”
ASME J. Vib. Acoustics
,
133
(
1
), p.
011010
.
137.
Bryant
,
M.
,
Wolff
,
E.
, and
Garcia
,
E.
,
2011
, “
Aeroelastic Flutter Energy Harvester Design: The Sensitivity of the Driving Instability to System Parameters
,”
Smart Mater. Struct.
,
20
(
12
), p.
125017
.
138.
Rong
,
Z.
,
Cao
,
B.
, and
Hu
,
J.
,
2017
, “
Stability Analysis on an Aeroelastic System for Design of a Flutter Energy Harvester
,”
Aerosp. Sci. Technol.
,
60
, pp.
203
209
.
139.
McCarthy
,
J.
,
Deivasigamani
,
A.
,
John
,
S.
,
Watkins
,
S.
,
Coman
,
F.
, and
Petersen
,
P.
,
2013
, “
Downstream Flow Structures of a Fluttering Piezoelectric Energy Harvester
,”
Exp. Therm. Fluid Sci.
,
51
, pp.
279
290
.
140.
Bryant
,
M.
,
Mahtani
,
R. L.
, and
Garcia
,
E.
,
2012
, “
Wake Synergies Enhance Performance in Aeroelastic Vibration Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
23
(
10
), pp.
1131
1141
.
141.
Dias
,
J.
,
De Marqui
,
C.
, Jr.
, and
Erturk
,
A.
,
2013
, “
Hybrid Piezoelectric-Inductive Flow Energy Harvesting and Dimensionless Electroaeroelastic Analysis for Scaling
,”
Appl. Phys. Lett.
,
102
(
4
), p.
044101
.
142.
Abdelkefi
,
A.
,
Ghommem
,
M.
,
Nuhait
,
A. O.
, and
Hajj
,
M.
,
2014
, “
Nonlinear Analysis and Enhancement of Wing-Based Piezoaeroelastic Energy Harvesters
,”
J. Sound Vib.
,
333
(
1
), pp.
166
177
.
143.
Xiang
,
J.
,
Wu
,
Y.
, and
Li
,
D.
,
2015
, “
Energy Harvesting From the Discrete Gust Response of a Piezoaeroelastic Wing: Modeling and Performance Evaluation
,”
J. Sound Vib.
,
343
, pp.
176
193
.
144.
Chen
,
Y.
,
Zhan
,
J.
,
Wu
,
J.
, and
Wu
,
J.
,
2017
, “
A Fully-Activated Flapping Foil in Wind Gust: Energy Harvesting Performance Investigation
,”
Ocean Eng.
,
138
(
Suppl. C
), pp.
112
122
.
145.
Xu
,
G.
,
Xu
,
W.
, and
Dai
,
J.
,
2017
, “
Numerical and Experimental Study of a Flapping Foil Generator
,”
Appl. Ocean Res.
,
63
(
Suppl. C
), pp.
242
250
.
146.
Sousa
,
V.
,
de M Anicézio
,
M.
,
De Marqui
,
C.
, Jr.
, and
Erturk
,
A.
,
2011
, “
Enhanced Aeroelastic Energy Harvesting by Exploiting Combined Nonlinearities: Theory and Experiment
,”
Smart Mater. Struct.
,
20
(
9
), p.
094007
.
147.
Abdelkefi
,
A.
, and
Hajj
,
M. R.
,
2013
, “
Performance Enhancement of Wing-Based Piezoaeroelastic Energy Harvesting Through Freeplay Nonlinearity
,”
Theor. Appl. Mech. Lett.
,
3
(
4
), p.
041001
.
148.
Wu
,
Y.
,
Li
,
D.
,
Xiang
,
J.
, and
Da Ronch
,
A.
,
2016
, “
A Modified Airfoil-Based Piezoaeroelastic Energy Harvester With Double Plunge Degrees of Freedom
,”
Theor. Appl. Mech. Lett.
,
6
(
5
), pp.
244
247
.
149.
Dias
,
J.
,
De Marqui
,
C.
, Jr.
, and
Erturk
,
A.
,
2014
, “
Three-Degree-of-Freedom Hybrid Piezoelectric-Inductive Aeroelastic Energy Harvester Exploiting a Control Surface
,”
AIAA J.
,
53
(
2
), pp.
394
404
.
150.
Siala
,
F.
, and
Liburdy
,
J. A.
,
2015
, “
Energy Harvesting of a Heaving and Forward Pitching Wing With a Passively Actuated Trailing Edge
,”
J. Fluids Struct.
,
57
, pp.
1
14
.
151.
Khalid
,
M. S. U.
,
Akhtar
,
I.
,
Imtiaz
,
H.
,
Dong
,
H.
, and
Wu
,
B.
,
2018
, “
On the Hydrodynamics and Nonlinear Interaction Between Fish in Tandem Configuration
,”
Ocean Eng.
,
157
, pp.
108
120
.
152.
Wu
,
J.
,
Zhan
,
J.
,
Wang
,
X.
, and
Zhao
,
N.
,
2015
, “
Power Extraction Efficiency Improvement of a Fully-Activated Flapping Foil: With the Help of an Auxiliary Rotating Foil
,”
J. Fluids Struct.
,
57
, pp.
219
228
.
153.
Li
,
S.
,
Yuan
,
J.
, and
Lipson
,
H.
, “
Ambient Wind Energy Harvesting Using Cross-Flow Fluttering
,”
J. Appl. Phys.
,
109
(
2
), p.
026104
.
154.
Zhao
,
J.
,
Yang
,
J.
,
Lin
,
Z.
,
Zhao
,
N.
,
Liu
,
J.
,
Wen
,
Y.
, and
Li
,
P.
,
2015
, “
An Arc-Shaped Piezoelectric Generator for Multi-Directional Wind Energy Harvesting
,”
Sens. Actuators A: Phys.
,
236
, pp.
173
179
.
155.
Xie
,
Y.
,
Lu
,
K.
, and
Zhang
,
D.
,
2014
, “
Investigation on Energy Extraction Performance of an Oscillating Foil With Modified Flapping Motion
,”
Renewable Energy
,
63
, pp.
550
557
.
156.
Emejeamara
,
F.
,
Tomlin
,
A.
, and
Millward-Hopkins
,
J.
,
2015
, “
Urban Wind: Characterisation of Useful Gust and Energy Capture
,”
Renewable Energy
,
81
, pp.
162
172
.
157.
Luo
,
S.
,
Yazdani
,
M.
,
Chew
,
Y.
, and
Lee
,
T.
,
1994
, “
Effects of Incidence and Afterbody Shape on Flow Past Bluff Cylinders
,”
J. Wind Eng. Ind. Aerodyn.
,
53
(
3
), pp.
375
399
.
158.
Erturk
,
A.
,
Vieira
,
W.
,
De Marqui
,
C.
, Jr.
, and
Inman
,
D. J.
,
2010
, “
On the Energy Harvesting Potential of Piezoaeroelastic Systems
,”
Appl. Phys. Lett.
,
96
(
18
), p.
184103
.
You do not currently have access to this content.