The coupled axial–torsional modes of vibration are examined for three common types of braided wires: the well-known (1 + 6) configuration, the trapezoidal configuration, and the so-called twisted-pair. Representative volume elements of these systems with angles of twist ranging from 0 deg to 30 deg are described using three-dimensional elasticity theory and subjected to pure axial deformation and then pure twist to determine the stiffness coefficients that are used to describe the force–displacement relationship. These are compared with the results of existing braided wire models for the (1 + 6) geometry. Both analytical and finite element models of all three wires are then introduced to determine the level of coupling between the axial and torsional modes of vibration for representative homogeneous and composite cables.

References

References
1.
Hruska
,
F. H.
,
1952
, “
Radial Forces in Wire Ropes
,”
Wire Wire Prod.
,
27
(5), pp.
459
463
.
2.
Hruska
,
F. H.
,
1953
, “
Tangential Forces in Wire Ropes
,”
Wire Wire Prod.
,
28
(5), pp.
455
460
.
3.
Machida
,
S.
, and
Durelli
,
A. J.
,
1973
, “
Response of a Strand to Axial and Torsional Displacements
,”
J. Mech. Eng. Sci.
,
15
(
4
), pp.
241
251
.
4.
Knapp
,
R. H.
,
1979
, “
Derivation of a New Stiffness Matrix for Helically Armoured Cables Considering Tension and Torsion
,”
Int. J. Numer. Methods Eng.
,
14
(
4
), pp.
515
529
.
5.
McConnell
,
K. G.
, and
Zemke
,
W. P.
,
1982
, “
A Model to Predict the Coupled Axial Torsion Properties of ACSR Electrical Conductors
,”
Exp. Mech.
,
22
(
7
), pp.
237
244
.
6.
Nawrocki
,
A.
, and
Labrosse
,
M.
,
2000
, “
A Finite Element Model for Simple Straight Wire Rope Strands
,”
Comput. Struct.
,
77
(
4
), pp.
345
359
.
7.
Costello
,
G. A.
, and
Phillips
,
J. W.
,
1976
, “
Effective Modulus of Twisted Wire Cables
,”
ASCE J. Eng. Mech. Div.
,
102
(
1
), pp.
171
181
.
8.
Huang
,
N. C.
,
1978
, “
Finite Extension of an Elastic Strand With a Central Core
,”
ASME J. Appl. Mech.
,
45
(
4
), pp.
852
858
.
9.
Velinsky
,
S. A.
,
1985
, “
General Nonlinear Theory for Complex Wire Rope
,”
Int. J. Mech. Sci.
,
27
(
7–8
), pp.
497
507
.
10.
Phillips
,
J. W.
, and
Costello
,
G. A.
,
1985
, “
Analysis of Wire Ropes With Internal-Wire-Rope Cores
,”
ASME J. Appl. Mech.
,
52
(
3
), pp.
510
516
.
11.
Kumar
,
K.
, and
Cochran
,
J. E.
,
1987
, “
Closed-Form Analysis for Elastic Deformations of Multilayered Strands
,”
ASME J. Appl. Mech.
,
54
(
4
), pp.
898
903
.
12.
Utting
,
W. S.
, and
Jones
,
N.
,
1987
, “
The Response of Wire Rope Strands to Axial Tensile loads—Part I: Experimental Results and Theoretical Predictions
,”
Int. J. Mech. Sci.
,
29
(
9
), pp.
605
619
.
13.
Utting
,
W. S.
, and
Jones
,
N.
,
1987
, “
The Response of Wire Rope Strands to Axial Tensile Loads—Part II: Comparison of Experimental Results and Theoretical Predictions
,”
Int. J. Mech. Sci.
,
29
(
9
), pp.
621
636
.
14.
Jiang
,
W.
,
1995
, “
A General Formulation of the Theory of Wire Ropes
,”
ASME J. Appl. Mech.
,
62
(
3
), pp.
747
755
.
15.
Sathikh
,
S.
,
Moorthy
,
M. B. K.
, and
Krishnan
,
M.
,
1996
, “
A Symmetric Linear Elastic Model for Helical Wire Strands Under Axisymmetric Loads
,”
J. Strain Anal. Eng. Des.
,
31
(
5
), pp.
389
399
.
16.
Elata
,
D.
,
Eshkenazy
,
R.
, and
Weiss
,
M. P.
,
2004
, “
The Mechanical Behavior of a Wire Rope With an Independent Wire Rope Core
,”
Int. J. Solids Struct.
,
41
(
5–6
), pp.
1157
1172
.
17.
Raoof
,
M.
, and
Hobbs
,
R. E.
,
1989
, “
Torsional Stiffness and Hysteresis in Spiral Strands
,”
Proc. Inst. Civ. Eng.
,
87
(
4
), pp.
501
515
.
18.
Blouin
,
F.
, and
Cardou
,
A.
,
1989
, “
A Study of Helically Reinforced Cylinders Under Axially Symmetric Loads and Application to Strand Mathematical Modelling
,”
Int. J. Solids Struct.
,
25
(
2
), pp.
189
200
.
19.
Raoof
,
M.
, and
Kraincanic
,
I.
,
1995
, “
Simple Derivation of the Stiffness Matrix for Axial/Torsional Coupling of Spiral Strands
,”
Comput. Struct.
,
55
(
4
), pp.
589
600
.
20.
Mohammed
,
R.
, and
Ivana
,
K.
,
1995
, “
Analysis of Large Diameter Steel Ropes
,”
ASCE J. Eng. Mech.
,
121
(
6
), pp.
667
675
.
21.
Cardou
,
A.
, and
Jolicoeur
,
C.
,
1997
, “
Mechanical Models of Helical Strands
,”
ASME Appl. Mech. Rev.
,
50
(
1
), pp.
1
14
.
22.
Spak
,
K.
,
Agnes
,
G.
, and
Inman
,
D.
,
2013
, “
Cable Modeling and Internal Damping Developments
,”
ASME Appl. Mech. Rev.
,
65
(
1
), pp.
10801
10818
.
23.
Xiang
,
L.
,
Wang
,
H. Y.
,
Chen
,
Y.
,
Guan
,
Y. J.
,
Wang
,
Y. L.
, and
Dai
,
L. H.
,
2015
, “
Modeling of Multi-Strand Wire Ropes Subjected to Axial Tension and Torsion Loads
,”
Int. J. Solids Struct.
,
58
, pp.
233
246
.
24.
Chiang
,
Y. J.
,
1996
, “
Characterizing Simple-Stranded Wire Cables Under Axial Loading
,”
Finite Elem. Anal. Des.
,
24
(
2
), pp.
49
66
.
25.
Wehking
,
K.
, and
Zieglen
,
S.
,
2004
, “
Calculation of a Standard Rope With FEM
,”
Wire
,
54
(
2
), pp.
69
100
.
26.
Irvine
,
H.
,
1974
, “
Studies in the Statics and Dynamics of Simple Cable Systems, Dynamics Laboratory
,” California Institute of Technology, Pasadena, CA, Report No.
DYNL-108
.https://authors.library.caltech.edu/26455/
27.
Samras
,
R. K.
,
Skop
,
R. A.
, and
Milburn
,
D. A.
,
1974
, “
An Analysis of Coupled Extensional-Torsional Oscillations in Wire Rope
,”
ASME J. Eng. Ind.
,
96
(
4
), pp.
1130
1135
.
28.
Rega
,
G.
,
2004
, “
Nonlinear Vibrations of Suspended Cables—Part I: Modeling and Analysis
,”
ASME Appl. Mech. Rev.
,
57
(
6
), pp.
443
478
.
29.
Shahsavari
,
H.
, and
Ostoja-Starzewski
,
M.
,
2005
, “
Spectral Finite Element of a Helix
,”
Mech. Res. Commun.
,
32
(
2
), pp.
147
152
.
30.
Thai
,
S.
,
Kim
,
N.-I.
, and
Lee
,
J.
,
2017
, “
Free Vibration Analysis of Cable Structures Using Isogeometric Approach
,”
Int. J. Comput. Methods
,
14
(
03
), p.
1750033
.
31.
Ghoreishi
,
S. R.
,
Davies
,
P.
,
Cartraud
,
P.
, and
Messager
,
T.
,
2007
, “
Analytical Modeling of Synthetic Fiber Ropes—Part II: A Linear Elastic Model for 1 + 6 Fibrous Structures
,”
Int. J. Solids Struct.
,
44
(
9
), pp.
2943
2960
.
32.
Costello
,
G. A.
,
1997
,
Theory of Wire Ropes
,
2nd ed.
,
Springer-Verlag
,
New York
.
33.
Alawar
,
A. A.
,
Bosze
,
E. J.
, and
Nutt
,
S.
,
2007
, “
High Temperature Strength and Creep of an Al Conductor With a Hybrid Composite Core
,”
International Conference on Composite Materials
, Kyoto, Japan, July 8–13, pp. 1–2.
34.
Labrosse
,
M. R.
,
1998
, “
Contribution à L'étude du Rôle du Frottement Sur le Comportement et la Durée de Vie Des Câbles Monocouches
,” Ph.D. thesis, Ecole Centrale de Nantes, Nantes, France (in French).
You do not currently have access to this content.